This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249934 #14 Dec 01 2014 03:21:31 %S A249934 1,1,1,4,19,107,671,4600,34218,276415,2439426,23724674,256361107, %T A249934 3091554768,41560590331,618957882104,10119509431084,179887355572358, %U A249934 3446915545155744,70686674091569072,1542478858735415921,35650141769790146478,869385516566240903091,22299067147713040916568 %N A249934 G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(3*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)). %C A249934 Compare the g.f. to the identity: %C A249934 G(x) = Sum_{n>=0} 1/G(x)^(2*n) * Product_{k=1..n} (1 - 1/G(x)^(2*k-1)) %C A249934 which holds for all power series G(x) such that G(0)=1. %H A249934 Paul D. Hanna and Vaclav Kotesovec, <a href="/A249934/b249934.txt">Table of n, a(n) for n = 0..240</a> (first 100 terms from Paul D. Hanna) %F A249934 G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+3)) * Product_{k=1..n} (A(x)^(2*k-1) - 1). %F A249934 a(n) ~ exp(Pi^2/24) * 12^n * n^(n-1) / (sqrt(6) * exp(n) * Pi^(2*n-1)). - _Vaclav Kotesovec_, Dec 01 2014 %e A249934 A(x) = 1 + x + x^2 + 4*x^3 + 19*x^4 + 107*x^5 + 671*x^6 + 4600*x^7 + 34218*x^8 +... %e A249934 The g.f. satisfies: %e A249934 x = (A(x)-1)/A(x)^4 + (A(x)-1)*(A(x)^3-1)/A(x)^10 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)/A(x)^18 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)/A(x)^28 + %e A249934 (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)*(A(x)^9-1)/A(x)^40 +... %t A249934 nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^(2m-1))/AGF^3,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* More efficient than PARI program, _Vaclav Kotesovec_, Nov 30 2014 *) %o A249934 (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); %o A249934 A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(3*m)*prod(k=1, m, 1-1/Ser(A)^(2*k-1))), #A-1)); A[n+1]} %o A249934 for(n=0, 25, print1(a(n), ", ")) %Y A249934 Cf. A214692. %K A249934 nonn %O A249934 0,4 %A A249934 _Paul D. Hanna_, Nov 27 2014