cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249982 T(n,k) is the number of length n+1 0..2*k arrays with the sum of the absolute values of adjacent differences equal to n*k.

Original entry on oeis.org

4, 6, 10, 8, 24, 20, 10, 42, 88, 64, 12, 64, 208, 384, 136, 14, 90, 426, 1242, 1606, 466, 16, 120, 728, 3030, 6856, 7138, 1012, 18, 154, 1178, 6252, 22560, 43068, 31380, 3580, 20, 192, 1744, 11524, 55372, 168506, 245860, 141272, 7864, 22, 234, 2508, 19574, 123154
Offset: 1

Views

Author

R. H. Hardin, Nov 10 2014

Keywords

Examples

			Table starts:
.....4.......6........8........10.........12..........14..........16
....10......24.......42........64.........90.........120.........154
....20......88......208.......426........728........1178........1744
....64.....384.....1242......3030.......6252.......11524.......19574
...136....1606.....6856.....22560......55372......123154......237348
...466....7138....43068....168506.....508902.....1290856.....2886016
..1012...31380...245860...1293326....4598532....14027522....35380112
..3580..141272..1589346...9937894...43752328...152155572...446342246
..7864..635686..9213728..77372824..399919272..1672105528..5529256528
.28340.2890884.60568000.604180880.3872197278.18444783546.70948896558
Some solutions for n=5 k=4:
..8....5....0....8....3....7....1....0....8....1....1....1....0....0....2....4
..3....1....5....3....8....0....6....3....4....6....2....5....7....2....5....8
..8....6....3....8....0....7....3....2....8....0....6....3....1....8....7....7
..1....4....4....0....2....5....7....8....8....2....0....8....4....6....0....3
..1....8....0....1....4....3....1....1....1....0....5....2....6....0....0....0
..4....3....8....2....1....1....3....4....6....5....1....5....4....4....8....8
		

Crossrefs

Row 1 is A004275(n+2).
Row 2 is A067728.

Formula

Empirical for row n:
n=1: a(n) = 2*n + 2
n=2: a(n) = 2*n^2 + 8*n
n=3: a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6); also a polynomial of degree 3 plus a quasipolynomial of degree 1 with period 2
n=4: a(n) = (14/3)*n^4 + (56/3)*n^3 + (121/3)*n^2 - (5/3)*n + 2
n=5: [linear recurrence of order 10; also a polynomial of degree 5 plus a quasipolynomial of degree 3 with period 2]
n=6: a(n) = (1987/180)*n^6 + (2033/30)*n^5 + (2785/18)*n^4 + 226*n^3 - (3017/180)*n^2 + (697/30)*n
n=7: [order 14; also a polynomial of degree 7 plus a quasipolynomial of degree 5 with period 2]