cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249984 Number of length 4+1 0..2*n arrays with the sum of the absolute values of adjacent differences equal to 4*n.

Original entry on oeis.org

64, 384, 1242, 3030, 6252, 11524, 19574, 31242, 47480, 69352, 98034, 134814, 181092, 238380, 308302, 392594, 493104, 611792, 750730, 912102, 1098204, 1311444, 1554342, 1829530, 2139752, 2487864, 2876834, 3309742, 3789780, 4320252, 4904574
Offset: 1

Views

Author

R. H. Hardin, Nov 10 2014

Keywords

Examples

			Some solutions for n=6:
..3...12....2....1....6....9...12....2....8...12....3....2...11...12....2....2
..0....0....9...11....2....3....2...11....0....6...11....6...12....1...12....9
.12....6....1....8...10....8...10....9....9...11....0...12....0....7....3....1
.10....6....1....0....5....2....6...11....3....0....1....5....4....2....7....3
..3....0...10....3...12....9....8....0....4....2....5...12...11....0....6...10
		

Crossrefs

Row 4 of A249982.

Formula

Empirical: a(n) = (14/3)*n^4 + (56/3)*n^3 + (121/3)*n^2 - (5/3)*n + 2.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: 2*x*(32 + 32*x - 19*x^2 + 10*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)