cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250022 Numbers m > 1 such that the fractional part of log_10(m!) is greater than at any smaller m > 1.

This page as a plain text file.
%I A250022 #27 Feb 26 2022 16:30:34
%S A250022 2,3,6,14,29,79,96,261,8765,17411,108965,583104,833851,1692693,
%T A250022 2064173,4146167,4594140,12861320,46464264,54336595,54528830,
%U A250022 364469152,1175842443,1430841730,9167724225,40752166709,46787073630,128693978358,129532358256,6194978274594
%N A250022 Numbers m > 1 such that the fractional part of log_10(m!) is greater than at any smaller m > 1.
%C A250022 This sequence is similar to A177901 ("Numbers n > 1 such that Sum_{k=2..n} log_10(k) is closer to an integer than at any smaller n") except that the values of the sums are approaching integers strictly from below.
%e A250022 01: log_10(2!)            =             0.301029995663981+
%e A250022 02: log_10(3!)            =             0.778151250383643+
%e A250022 03: log_10(6!)            =             2.857332496431268+
%e A250022 04: log_10(14!)           =            10.940408352067718+
%e A250022 05: log_10(29!)           =            30.946538820206057+
%e A250022 06: log_10(79!)           =           116.951637735507649+
%e A250022 07: log_10(96!)           =           149.996370650159498+
%e A250022 08: log_10(261!)          =           518.999861489950633+
%e A250022 09: log_10(8765!)         =         30753.999918708768634+
%e A250022 10: log_10(17411!)        =         66277.999990331137038+
%e A250022 11: log_10(108965!)       =        501567.999995101004009+
%e A250022 12: log_10(583104!)       =       3108793.999995955509958+
%e A250022 13: log_10(833851!)       =       4575171.999998004577195+
%e A250022 14: log_10(1692693!)      =       9807946.999998415147545+
%e A250022 15: log_10(2064173!)      =      12138272.999999698549856+
%e A250022 16: log_10(4146167!)      =      25637214.999999864901639+
%e A250022 17: log_10(4594140!)      =      28611892.999999950670122+
%e A250022 18: log_10(12861320!)     =      85849199.999999970372496+
%e A250022 19: log_10(46464264!)     =     336067874.999999977837282+
%e A250022 20: log_10(54336595!)     =     396700504.999999987676435+
%e A250022 21: log_10(54528830!)     =     398187607.999999992752989+
%e A250022 22: log_10(364469152!)    =    2962174305.999999997663445+
%e A250022 23: log_10(1175842443!)   =   10154639602.999999998805009+
%e A250022 24: log_10(1430841730!)   =   12478795857.999999999673704+
%e A250022 25: log_10(9167724225!)   =   87349774425.999999999908570+
%e A250022 26: log_10(40752166709!)  =  414688189184.999999999986848+
%e A250022 27: log_10(46787073630!)  =  478904597405.999999999986917+
%e A250022 28: log_10(128693978358!) = 1373842161327.999999999991789+
%e A250022 29: log_10(129532358256!) = 1383157375034.999999999999183+
%e A250022 30: log_10(6194978274594!)=76555963692202.999999999999259+
%Y A250022 Cf. A177901, A249829.
%K A250022 nonn
%O A250022 1,1
%A A250022 _Jon E. Schoenfield_, Nov 10 2014