This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250026 #34 Aug 26 2018 17:45:51 %S A250026 1,7825,105,37,23,18,20,20,15,16,20,23,17,21,26,17,23,28,25,29,29,26, %T A250026 36,32,27,38,33,35,41,36 %N A250026 The 2-color Rado numbers for x_1^2 + x_2^2 + ... + x_n^2 = z^2. %C A250026 The value of a(2) was only recently discovered (see Heule, Kullmann, & Marek link). - _Kellen Myers_, May 27 2016 %D A250026 Paul Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Université de Genève, L'Enseignement Mathématique 28 (1980). %H A250026 Marijn J. H. Heule, Oliver Kullmann, Victor W. Marek, <a href="http://arxiv.org/abs/1605.00723"> Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer</a> arXiv:1605.00723 [math.CO], May 2016. %H A250026 Kellen Myers, <a href="http://arxiv.org/abs/1501.05085">A Note on a Question of Erdős & Graham</a>, arXiv:1501.05085 [math.CO], Jan 2015. %H A250026 Kellen Myers and Joseph Parrish, <a href="http://math.colgate.edu/~integers/s18b6/s18b6.Abstract.html">Some Nonlinear Rado Numbers</a>, Integers, 18B (2018), #A6. %e A250026 The integers 1 through 105 cannot be 2-colored without inducing a monochromatic solution to x^2+y^2+w^2=z^2 (and 105 is the least such number), thus a(3)=105. %K A250026 nonn,hard,more %O A250026 1,2 %A A250026 _Kellen Myers_, Nov 10 2014 %E A250026 a(18)-a(30) from _Kellen Myers_, Mar 17 2015 %E A250026 a(1)-a(2) from _Kellen Myers_, May 27 2016