cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250032 a(n) is the numerator of the density of natural numbers m such that gcd(m,floor(m/n))>1.

Original entry on oeis.org

1, 1, 1, 11, 7, 19, 16, 117, 269, 877, 1003, 11243, 4261, 56163, 61883, 199663, 107339, 919889, 2009948, 38444267, 41354174, 43432679, 46078049, 266161243, 379669754, 387106183, 407127338, 1258564159, 1322304979, 19229195413, 40830611677, 634491904301, 2638247862269, 2717256540199, 2823435623209, 2886468920107, 1006725304509
Offset: 1

Views

Author

Stanislav Sykora, Nov 16 2014

Keywords

Comments

Let m be any natural number, and P(m) a relational expression on m (i.e., a property of m) evaluating to either 0 (false) or 1 (true). This defines a subset S of natural numbers N for which P(m)=1. When there exists a limit d=limit(M->infinity, Sum(m=1..M, P(m))/M), d is said to be the limit mean density (or just density) of the subset S in N. Now, choose an integer parameter n and set P(m)=gcd(m,floor(m/n))>1. This makes the property P, the corresponding subset S, and the density d all dependent upon n. The reference proves that for any n>0, the density d(n) exists and is a rational number. The value of a(n) is the numerator of d(n), while A250033(n) is the denominator of d(n).

Examples

			When n=1, S includes all natural numbers except 1, so d(1)=1. Hence a(1)=1 and A250033(1)=1.
When n=2, S includes all even numbers greater than 2, so d(2)=1/2. Hence a(2)=1 and A250033(2)=2.
When n=10, the subset S is A248500 and d(10)=877/2100. Hence a(10)=877 and A250033(10)=2100.
When n=16, S is A248502 and d(16)=199663/480480. Hence a(16)=199663 and A250033(16)=480480.
		

Crossrefs

Programs

  • PARI
    s_aux(n,p0,inp)={my(t=0/1,tt=0/1,in=inp,pp);while(1,pp=p0*prime(in);tt=n\pp;if(tt==0,break,t+=tt/pp-s_aux(n,pp,in++)));return(t)};
    s(n)=1+s_aux(n,1,1);
    a=vector(1000,n,numerator(s(n-1)/n))

Formula

For n>1, a(n)/A250033(n) = s(n-1)/n, where s(n) = A250034(n)/A072155(n).
lim(n->infinity)a(n)/A250033(n) = 1-1/zeta(2) = A229099.