cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250068 Maximum width of any region in the symmetric representation of sigma(n).

This page as a plain text file.
%I A250068 #31 Sep 05 2021 15:19:01
%S A250068 1,1,1,1,1,2,1,1,1,1,1,2,1,1,2,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,1,1,
%T A250068 2,2,1,1,1,2,1,2,1,1,2,1,1,2,1,1,1,1,1,2,1,2,1,1,1,3,1,1,2,1,1,2,1,1,
%U A250068 1,2,1,3,1,1,2,1,2,2,1,2,1,1,1,3,1,1,1,2,1,3,2,1,1,1,1,2,1,1,2,2
%N A250068 Maximum width of any region in the symmetric representation of sigma(n).
%C A250068 Since the width of the single region of the symmetric representation of sigma( 2^ceiling((p-1)*(log_2 3) - 1) * 3^(p-1) ), for prime number p, at the diagonal equals p, this sequence contains an increasing subsequence (see A250071).
%C A250068 a(n) is also the number of layers of width 1 in the symmetric representation of sigma(n). For more information see A001227. - _Omar E. Pol_, Dec 13 2016
%H A250068 N. J. A. Sloane, <a href="/A250068/b250068.txt">Table of n, a(n) for n = 1..10000</a>
%F A250068 a(n) = max_{k=1..floor((sqrt(8*n+1) - 1)/2)} (Sum_{j=1..k}(-1)^(j+1)*A237048(n, j)), for n >= 1.
%e A250068 a(6) = 2 since the sequence of widths at each unit step in the symmetric representation of sigma(6) = 12 is 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1. For visual examples see A237270, A237593 and sequences referenced in these.
%t A250068 (* function a2[ ] is defined in A249223 *)
%t A250068 a250068[n_]:=Max[a2[n]]
%t A250068 a250068[{m_,n_}]:=Map[a250068,Range[m,n]]
%t A250068 a250068[{1,100}](* data *)
%o A250068 (PARI) t237048(n,k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0);
%o A250068 kmax(n) = (sqrt(1+8*n)-1)/2;
%o A250068 t249223(n,k) = sum(j=1, k, (-1)^(j+1)*t237048(n,j));
%o A250068 a(n) = my(wm = t249223(n, 1)); for (k=2, kmax(n), wm = max(wm, t249223(n, k))); wm; \\ _Michel Marcus_, Sep 20 2015
%Y A250068 Cf. A000203, A001227, A237048, A237270, A237271, A237591, A237593, A241008, A241010, A246955, A247687, A249223, A249351 (widths), A279387, A279388, A279391.
%Y A250068 See A250070, A250071, A340506 for records.
%K A250068 nonn
%O A250068 1,6
%A A250068 _Hartmut F. W. Hoft_, Nov 11 2014