cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250089 5-smooth numbers (A051037) written in base 60, concatenating the decimal values of the sexagesimal digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 100, 104, 112, 115, 120, 121, 130, 136, 140, 148, 200, 205, 208, 215, 224, 230, 240, 242, 300, 312, 320, 336, 345, 400, 403, 410, 416, 430, 448, 500, 520, 524, 600
Offset: 1

Views

Author

Michael De Vlieger, Nov 11 2014

Keywords

Comments

Each pair of digits constitutes the decimal value of a single sexagesimal digit, as on a digital clock, eliminating the colon (:). Any leading zeros are truncated. Thus decimal 64 appears as "104" and not "0104".

Examples

			a(28) = 112 since A051037(28) = 72. 72 = 1 * 60 + 12, thus sexagesimal 1,12. Concatenating the decimal values of the sexagesimal places gives "112".
		

References

  • D. E. Knuth, Ancient Babylonian Algorithms, Communications of the ACM 15 (1972): 671-677.

Crossrefs

Programs

  • Mathematica
    a250089[n_Integer] := FromDigits /@ Map[StringJoin, If[# < 10, StringJoin["0", ToString[#]], ToString[#]] & /@ IntegerDigits[#, 60] & /@ Select[Range[n], Last@Map[First, FactorInteger@#] < 7 &], 2]; a250089[360] (* Michael De Vlieger, Nov 11 2014, after Robert G. Wilson v at A051037 *)
    With[{n = 360}, Map[FromDigits@ IntegerDigits[#, MixedRadix[ Flatten@ ConstantArray[{6, 10}, {2 Ceiling@ Log[60, n]}]]] &, Union@ Flatten@ Table[2^p1*3^p2*5^p3, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p3, 0, Log[5, n/(2^p1*3^p2)]}]]] (* Version 10.2, or *)
    With[{n = 360}, FromDigits@ StringJoin@ Map[If[# < 10, StringJoin["0", ToString@ #], ToString@ #] &, IntegerDigits[#, 60]] & /@ Union@ Flatten@ Table[2^p1*3^p2*5^p3, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p3, 0, Log[5, n/(2^p1*3^p2)]}]] (* Michael De Vlieger, Feb 20 2017 *)