A250089 5-smooth numbers (A051037) written in base 60, concatenating the decimal values of the sexagesimal digits.
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 100, 104, 112, 115, 120, 121, 130, 136, 140, 148, 200, 205, 208, 215, 224, 230, 240, 242, 300, 312, 320, 336, 345, 400, 403, 410, 416, 430, 448, 500, 520, 524, 600
Offset: 1
Examples
a(28) = 112 since A051037(28) = 72. 72 = 1 * 60 + 12, thus sexagesimal 1,12. Concatenating the decimal values of the sexagesimal places gives "112".
References
- D. E. Knuth, Ancient Babylonian Algorithms, Communications of the ACM 15 (1972): 671-677.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10540 (Hamming numbers <= 60^10)
Programs
-
Mathematica
a250089[n_Integer] := FromDigits /@ Map[StringJoin, If[# < 10, StringJoin["0", ToString[#]], ToString[#]] & /@ IntegerDigits[#, 60] & /@ Select[Range[n], Last@Map[First, FactorInteger@#] < 7 &], 2]; a250089[360] (* Michael De Vlieger, Nov 11 2014, after Robert G. Wilson v at A051037 *) With[{n = 360}, Map[FromDigits@ IntegerDigits[#, MixedRadix[ Flatten@ ConstantArray[{6, 10}, {2 Ceiling@ Log[60, n]}]]] &, Union@ Flatten@ Table[2^p1*3^p2*5^p3, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p3, 0, Log[5, n/(2^p1*3^p2)]}]]] (* Version 10.2, or *) With[{n = 360}, FromDigits@ StringJoin@ Map[If[# < 10, StringJoin["0", ToString@ #], ToString@ #] &, IntegerDigits[#, 60]] & /@ Union@ Flatten@ Table[2^p1*3^p2*5^p3, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p3, 0, Log[5, n/(2^p1*3^p2)]}]] (* Michael De Vlieger, Feb 20 2017 *)
Comments