A250119 Triangle read by rows: T(n,m) (n >= 1, 1 <= m <= n) = number of set partitions of [n], avoiding 123454, with m blocks.
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 10, 1, 1, 31, 90, 65, 14, 1, 1, 63, 301, 350, 121, 18, 1, 1, 127, 966, 1701, 834, 193, 22, 1, 1, 255, 3025, 7770, 5037, 1606, 281, 26, 1, 1, 511, 9330, 34105, 27918, 11461, 2730, 385, 30, 1, 1, 1023, 28501, 145750, 145777, 73762, 22381, 4270, 505, 34, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 7, 6, 1; 1, 15, 25, 10, 1; 1, 31, 90, 65, 14, 1; 1, 63, 301, 350, 121, 18, 1; 1, 127, 966, 1701, 834, 193, 22, 1; 1, 255, 3025, 7770, 5037, 1606, 281, 26, 1; 1, 511, 9330, 34105, 27918, 11461, 2730, 385, 30, 1; 1, 1023, 28501, 145750, 145777, 73762, 22381, 4270, 505, 34, 1; ...
Links
- Lars Blomberg, Table of n, a(n) for n = 1..5050 (The first 100 rows.)
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
Extensions
a(46)-a(66) from Lars Blomberg, Aug 17 2017