cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250125 Coordination sequence of point of type 3.4.3.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

This page as a plain text file.
%I A250125 #25 Jun 21 2018 10:16:03
%S A250125 1,4,6,11,13,15,23,23,33,30,33,42,41,54,46,54,58,58,73,64,75,74,79,89,
%T A250125 81,94,92,100,105,102,110,109,119,123,123,126,130,135,140,142,144,151,
%U A250125 151,161,158,161,170,169,182,174,182,186,186,201,192,203,202,207,217
%N A250125 Coordination sequence of point of type 3.4.3.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.
%C A250125 This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
%C A250125 For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).
%D A250125 Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.
%H A250125 Joseph Myers, <a href="/A250125/b250125.txt">Table of n, a(n) for n = 0..1000</a>
%H A250125 Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, <a href="http://arxiv.org/abs/1301.0664">Ball Packings with Periodic Constraints</a>, arXiv:1301.0664 [math.MG], 2013.
%H A250125 Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, <a href="http://dx.doi.org/10.1007/s00454-014-9636-z">Ball Packings with Periodic Constraints</a>, Discrete Comput. Geom. 52 (2014), no. 4, 754--779. MR3279548.
%H A250125 Brian Galebach, <a href="http://probabilitysports.com/tilings.html?u=0&amp;n=4&amp;t=132">Tiling 132</a> (in list of 4-uniform tilings).
%H A250125 Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a>
%H A250125 N. J. A. Sloane, <a href="/A250123/a250123_3.png">A portion of the 3-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}</a>. The four black dots labeled P,Q,R,S show the four types of point. The present sequence is for a point of type S.
%H A250125 N. J. A. Sloane, <a href="/A250125/a250125.png">Shows layers a(0)-a(6)</a>
%F A250125 Empirical g.f.: -(x^17 +x^16 +x^15 +x^14 -2*x^13 -4*x^12 -6*x^11 -7*x^10 -11*x^9 -18*x^8 -16*x^7 -19*x^6 -14*x^5 -13*x^4 -11*x^3 -6*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - _Colin Barker_, Dec 02 2014
%Y A250125 Cf. A250123, A250124, A250126.
%Y A250125 List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
%K A250125 nonn
%O A250125 0,2
%A A250125 _N. J. A. Sloane_, Nov 29 2014
%E A250125 Galebach link from _Joseph Myers_, Nov 30 2014
%E A250125 Extended by _Joseph Myers_, Dec 02 2014