This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250126 #23 Jun 21 2018 10:16:25 %S A250126 1,4,9,9,12,19,21,28,27,31,38,40,48,44,49,56,57,67,63,69,73,75,85,80, %T A250126 88,92,95,102,98,106,109,114,121,118,123,127,132,138,137,142,147,149, %U A250126 156,155,159,166,168,176,172,177,184,185,195,191,197,201,203,213,208 %N A250126 Coordination sequence of point of type 3.3.4.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}. %C A250126 This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure). %C A250126 For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987). %D A250126 Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. %H A250126 Joseph Myers, <a href="/A250126/b250126.txt">Table of n, a(n) for n = 0..1000</a> %H A250126 Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, <a href="http://arxiv.org/abs/1301.0664">Ball Packings with Periodic Constraints</a>, arXiv:1301.0664 [math.MG], 2013. %H A250126 Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, <a href="http://dx.doi.org/10.1007/s00454-014-9636-z">Ball Packings with Periodic Constraints</a>, Discrete Comput. Geom. 52 (2014), no. 4, 754--779. MR3279548. %H A250126 Brian Galebach, <a href="http://probabilitysports.com/tilings.html?u=0&n=4&t=132">Tiling 132</a> (in list of 4-uniform tilings). %H A250126 Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a> %H A250126 N. J. A. Sloane, <a href="/A250123/a250123_3.png">A portion of the 3-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}</a>. The four black dots labeled P,Q,R,S show the four types of point. The present sequence is for a point of type Q. %H A250126 N. J. A. Sloane, <a href="/A250125/a250126.png">Shows layers a(0)-a(6)</a> %F A250126 Empirical g.f.: -(2*x^16 +x^14 -2*x^12 -7*x^11 -10*x^10 -10*x^9 -14*x^8 -18*x^7 -17*x^6 -18*x^5 -12*x^4 -9*x^3 -9*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - _Colin Barker_, Dec 02 2014 %Y A250126 Cf. A250123, A250124, A250125. %Y A250126 List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12). %K A250126 nonn %O A250126 0,2 %A A250126 _N. J. A. Sloane_, Nov 29 2014 %E A250126 Galebach link from _Joseph Myers_, Nov 30 2014 %E A250126 Extended by _Joseph Myers_, Dec 02 2014