A250130 Numerator of the harmonic mean of the first n primes.
2, 12, 90, 840, 11550, 180180, 3573570, 77597520, 2007835830, 64696932300, 2206165391430, 89048857617720, 3955253425853730, 183158658643380420, 9223346738827371150, 521426535635040715680, 32686925952621614864190, 2111190864469325477698860
Offset: 1
Examples
a(3) = 90 because the first 3 primes are [2,3,5] and 3 / (1/2+1/3+1/5) = 90/31. The first fractions are 2/1, 12/5, 90/31, 840/247, 11550/2927, 180180/40361, 3573570/716167, 77597520/14117683, ...
Links
- Colin Barker, Table of n, a(n) for n = 1..300
Programs
-
Maple
N:= 100: # to get a(1) to a(N) B:= ListTools:-PartialSums([seq](1/ithprime(i),i=1..N)): seq(numer(n/B[n]), n=1..N); # Robert Israel, Nov 13 2014
-
Mathematica
Table[n/Sum[1/Prime[k],{k,1,n}],{n,1,20}]//Numerator (* Vaclav Kotesovec, Nov 13 2014 *) Table[n*Product[Prime[j], {j, n}], {n, 17}] (* L. Edson Jeffery, Jan 04 2015 *)
-
PARI
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k]) s=vector(30); p=primes(#s); for(k=1, #p, s[k]=numerator( harmonicmean( vector(k, i, p[i])))); s
-
PARI
n=0; P=1; forprime(p=2, 100, n++; P *= p; print1(n*P, ", ")) \\ Jeppe Stig Nielsen, Aug 11 2019
-
Python
from sympy import prime from fractions import Fraction def a(n): return (n/sum(Fraction(1, prime(k)) for k in range(1, n+1))).numerator print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Feb 12 2021
Formula
a(n) = n*A002110(n). - L. Edson Jeffery, Jan 04 2015