cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250133 Denominator of the harmonic mean of the first n composite numbers.

Original entry on oeis.org

1, 5, 13, 47, 271, 301, 2287, 491, 1045, 367, 1919, 1999, 22829, 23599, 121691, 1628183, 15054047, 15440147, 15800507, 32276689, 32931889, 570652913, 83022119, 84480719, 1631388461, 1656970061, 1681912121, 11939665247, 12098387447, 12253582487, 285324285601
Offset: 1

Views

Author

Colin Barker, Nov 14 2014

Keywords

Comments

Also numerator of the sum of the reciprocals of the first n composite numbers (A250133/A296358).

Examples

			a(3) = 13 because the first 3 composite numbers are [4,6,8] and 3 / (1/4+1/6+1/8) = 72/13.
1/4, 5/12, 13/24, 47/72, 271/360, 301/360, 2287/2520, 491/504, 1045/1008, 367/336, 1919/1680, 1999/1680, 22829/18480, ... = A250133/A296358
		

Crossrefs

Cf. A250132 (numerators).
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.

Programs

  • PARI
    harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
    composite(n) = for(k=0, primepi(n), isprime(n++)&&k--); n \\ from A002808
    s=vector(100); for(k=1, #s, s[k]=denominator(harmonicmean(vector(k, i, composite(i))))); s