cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A250162 Number of length n+1 0..3 arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

4, 20, 96, 436, 1880, 7836, 32032, 129572, 521256, 2091052, 8376368, 33529908, 134168632, 536772668, 2147287104, 8589541444, 34358952008, 137437380684, 549752668240, 2199016964180, 8796080439384, 35184346923100, 140737438023776
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Examples

			Some solutions for n=6:
..1....3....3....2....3....2....2....2....2....1....1....2....1....0....2....1
..1....0....2....3....3....0....2....2....2....1....0....0....1....2....0....0
..0....3....1....3....3....2....3....3....2....3....3....0....1....2....3....2
..3....1....0....0....0....3....1....1....2....2....3....2....3....3....0....1
..0....2....3....3....3....2....3....2....1....0....1....3....3....1....2....2
..1....1....0....1....3....0....2....0....0....1....2....2....0....3....0....2
..3....3....1....2....3....2....2....0....2....3....1....0....1....2....2....3
		

Crossrefs

Column 3 of A250167.

Formula

Empirical: a(n) = 8*a(n-1) - 21*a(n-2) + 22*a(n-3) - 8*a(n-4).
Conjectures from Colin Barker, Nov 12 2018: (Start)
G.f.: 4*x*(1 - 3*x + 5*x^2) / ((1 - x)^2*(1 - 2*x)*(1 - 4*x)).
a(n) = 2*(2 - 3*2^n + 4^n + 2*n).
(End)

A250163 Number of length n+1 0..4 arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

5, 33, 211, 1269, 7109, 37881, 195927, 996933, 5029417, 25262121, 126608171, 633821781, 3171197325, 15861685497, 79324281727, 396666275397, 1983460173617, 9917674841193, 49589469690579, 247950578857365, 1239762467069077
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Examples

			Some solutions for n=6:
..3....0....1....0....1....2....0....4....4....4....1....3....4....1....1....0
..2....1....0....0....2....3....4....1....4....3....1....0....2....3....3....4
..3....1....4....2....3....2....0....0....1....0....3....2....4....4....0....3
..2....2....2....1....3....0....0....0....0....0....4....4....1....2....4....0
..0....0....4....3....1....4....3....1....4....2....4....1....3....4....3....1
..2....0....2....1....3....0....1....2....2....2....3....2....2....3....2....2
..3....2....3....0....3....0....2....2....4....0....1....3....0....3....1....2
		

Crossrefs

Column 4 of A250167.

Formula

Empirical: a(n) = 16*a(n-1) -105*a(n-2) +372*a(n-3) -783*a(n-4) +1008*a(n-5) -779*a(n-6) +332*a(n-7) -60*a(n-8).
Empirical g.f.: x*(5 - 47*x + 208*x^2 - 502*x^3 + 599*x^4 - 311*x^5 + 52*x^6 + 44*x^7) / ((1 - x)^4*(1 - 2*x)^2*(1 - 3*x)*(1 - 5*x)). - Colin Barker, Nov 12 2018

A250164 Number of length n+1 0..5 arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

6, 48, 380, 2860, 19896, 129648, 810964, 4962056, 30034672, 180893724, 1087112084, 6527090276, 39173693352, 235070531992, 1410496377492, 8463170413616, 50779536937024, 304678626418660, 1828075665965204, 10968465043204908
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Comments

Column 5 of A250167

Examples

			Some solutions for n=6
..3....0....3....4....4....1....0....3....3....4....3....1....4....3....1....3
..2....2....2....0....5....1....0....4....5....0....3....4....0....0....4....5
..1....5....1....0....4....2....4....0....1....0....3....3....2....2....3....0
..1....0....0....4....4....4....1....5....4....3....3....0....4....0....5....4
..2....4....1....3....2....0....5....5....5....5....4....3....4....1....1....2
..5....3....3....0....0....1....3....2....3....2....5....3....5....0....2....3
..1....4....1....4....2....3....2....3....5....2....3....1....0....1....1....1
		

A250165 Number of length n+1 0..6 arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

7, 67, 639, 5831, 49037, 380939, 2810751, 20169871, 142786013, 1004527983, 7047533399, 49383700439, 345855478109, 2421574390899, 16953120700735, 118679602696751, 830786561364589, 5815618832245175, 40709771502502967
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Comments

Column 6 of A250167

Examples

			Some solutions for n=5
..6....2....3....4....4....2....3....4....6....0....0....4....1....4....2....0
..3....6....0....1....2....4....4....6....0....1....0....4....6....3....0....3
..6....3....3....4....6....5....6....3....5....6....6....2....2....4....4....2
..6....4....2....2....1....1....3....3....6....0....1....5....4....0....1....0
..6....3....3....0....6....4....6....1....1....1....2....0....6....0....4....3
..0....4....3....4....2....0....5....0....4....4....0....0....5....4....6....2
		

A250166 Number of length n+1 0..7 arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

8, 88, 976, 10460, 103556, 938128, 7989940, 65768448, 532548628, 4281269376, 34316191340, 274736779444, 2198552029712, 17590557578440, 140731669092632, 1125878500233800, 9007118671839640, 72057285402401144, 576459555378977560
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Comments

Column 7 of A250167

Examples

			Some solutions for n=5
..2....5....5....4....1....1....1....2....0....4....3....5....1....6....4....4
..1....5....0....6....3....6....7....7....5....2....2....7....4....4....3....6
..5....7....3....3....1....5....3....3....3....2....1....2....6....5....5....7
..6....6....6....5....1....2....4....4....5....0....5....6....2....4....6....2
..5....7....7....3....2....3....6....5....4....0....7....7....3....4....5....1
..2....7....7....2....1....1....5....4....0....0....7....5....5....2....6....0
		

A250168 Number of length 3+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

8, 37, 96, 211, 380, 639, 976, 1437, 2000, 2721, 3568, 4607, 5796, 7211, 8800, 10649, 12696, 15037, 17600, 20491, 23628, 27127, 30896, 35061, 39520, 44409, 49616, 55287, 61300, 67811, 74688, 82097, 89896, 98261, 107040, 116419, 126236, 136687, 147600
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Examples

			Some solutions for n=6:
..4....0....3....6....1....1....6....2....0....5....0....1....4....0....4....0
..5....2....3....1....4....2....5....2....3....5....1....3....1....3....0....3
..5....5....4....1....5....3....0....4....5....3....6....0....5....1....5....4
..6....6....3....6....3....5....6....6....0....5....2....1....6....0....4....6
		

Crossrefs

Row 3 of A250167.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Empirical for n mod 2 = 0: a(n) = (29/12)*n^3 + (11/4)*n^2 + (17/6)*n + 1.
Empirical for n mod 2 = 1: a(n) = (29/12)*n^3 + (11/4)*n^2 + (19/12)*n + (5/4).
Empirical g.f.: x*(8 + 21*x + 14*x^2 + 14*x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2). - Colin Barker, Nov 12 2018

A250169 Number of length 4+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

16, 119, 436, 1269, 2860, 5831, 10460, 17765, 27984, 42611, 61752, 87477, 119672, 161051, 211212, 273601, 347428, 436963, 540948, 664553, 805976, 971367, 1158288, 1373969, 1615248, 1890503, 2195780, 2540693, 2920396, 3345831, 3811180, 4328789
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Examples

			Some solutions for n=6:
..2....0....3....0....1....1....3....5....0....2....4....5....1....2....4....0
..2....2....0....2....0....6....4....2....6....3....5....3....2....3....4....3
..2....0....2....0....6....1....3....6....5....1....1....1....1....0....5....5
..2....3....3....6....3....4....0....1....6....0....0....0....4....2....1....1
..2....0....1....4....5....1....1....3....2....4....4....3....3....0....4....2
		

Crossrefs

Row 4 of A250167.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) - 2*a(n-5) + 2*a(n-7) + a(n-8) + a(n-9) - 2*a(n-10) - a(n-11) + a(n-12).
Empirical for n mod 12 = 0: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 1: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (57/16)
Empirical for n mod 12 = 2: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n - (1/3)
Empirical for n mod 12 = 3: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (73/16)
Empirical for n mod 12 = 4: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 5: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (235/48)
Empirical for n mod 12 = 6: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 7: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (73/16)
Empirical for n mod 12 = 8: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n - (1/3)
Empirical for n mod 12 = 9: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (57/16)
Empirical for n mod 12 = 10: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 11: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (283/48).
Empirical g.f.: x*(16 + 103*x + 285*x^2 + 611*x^3 + 854*x^4 + 1020*x^5 + 852*x^6 + 612*x^7 + 274*x^8 + 101*x^9 - x^10 + x^11) / ((1 - x)^5*(1 + x)^3*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Nov 12 2018

A250170 Number of length 5+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

32, 373, 1880, 7109, 19896, 49037, 103556, 203615, 364900, 624811, 1006084, 1570791, 2347840, 3431579, 4856212, 6757417, 9171308, 12285541, 16134624, 20968689, 26816804, 34003157, 42544984, 52855367, 64932468, 79290519, 95903144
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Comments

Row 5 of A250167

Examples

			Some solutions for n=6
..6....3....3....3....4....6....4....3....5....1....6....4....1....0....6....3
..3....1....0....1....6....4....3....3....1....5....6....3....4....0....4....5
..1....6....2....2....5....6....0....2....2....5....4....3....5....3....1....1
..0....2....4....4....0....0....3....4....3....4....0....2....3....1....2....1
..5....1....1....6....2....0....5....2....1....3....4....1....4....2....6....1
..6....1....5....3....2....6....6....3....1....5....6....2....3....0....6....3
		

Formula

Empirical: a(n) = a(n-2) +a(n-3) +2*a(n-4) -a(n-6) -3*a(n-7) -3*a(n-8) -a(n-9) +3*a(n-11) +4*a(n-12) +3*a(n-13) -a(n-15) -3*a(n-16) -3*a(n-17) -a(n-18) +2*a(n-20) +a(n-21) +a(n-22) -a(n-24)
Empirical: also a polynomial of degree 5 plus a cubic quasipolynomial with period 60, the first 12 being:
Empirical for n mod 60 = 0: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n + 1
Empirical for n mod 60 = 1: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (223/64)*n + (457247/8640)
Empirical for n mod 60 = 2: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (2339/36)*n + (7721/270)
Empirical for n mod 60 = 3: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (703/64)*n + (7753/64)
Empirical for n mod 60 = 4: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (1141/135)
Empirical for n mod 60 = 5: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (7639/576)*n + (217043/1728)
Empirical for n mod 60 = 6: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (157/10)
Empirical for n mod 60 = 7: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (703/64)*n + (893567/8640)
Empirical for n mod 60 = 8: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (2339/36)*n + (1223/27)
Empirical for n mod 60 = 9: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (223/64)*n + (24653/320)
Empirical for n mod 60 = 10: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (1531/54)
Empirical for n mod 60 = 11: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (11959/576)*n + (1493887/8640)

A250171 Number of length 6+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

64, 1151, 7836, 37881, 129648, 380939, 938128, 2121089, 4309040, 8284391, 14826764, 25544585, 41805464, 66528651, 101887084, 152748637, 222278752, 318099483, 444552268, 612989717, 829094428, 1109083919, 1460065140
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Comments

Row 6 of A250167

Examples

			Some solutions for n=5
..0....1....0....3....4....3....0....4....1....0....4....0....5....0....4....4
..1....5....4....4....0....4....0....4....3....1....2....4....0....5....0....0
..0....3....4....4....4....2....2....1....4....3....5....4....5....3....3....1
..3....1....2....1....0....2....0....1....2....3....0....3....3....0....3....3
..5....2....1....1....5....0....1....0....5....3....5....0....0....0....2....2
..2....3....1....5....2....0....1....0....4....5....1....5....4....3....3....3
..2....1....0....5....4....5....2....4....1....4....0....0....5....2....4....4
		

A250172 Number of length 7+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

128, 3517, 32032, 195927, 810964, 2810751, 7989940, 20567199, 46931176, 100480363, 198506588, 375153177, 669200436, 1155420975, 1910171088, 3080038929, 4801129076, 7337318733, 10913397192, 15974820909, 22870564032
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Comments

Row 7 of A250167

Examples

			Some solutions for n=4
..0....1....1....1....1....2....2....2....1....0....0....1....1....2....0....1
..1....0....1....1....2....2....2....0....4....1....0....0....1....1....1....3
..2....1....1....1....3....1....3....1....0....2....4....4....0....2....2....3
..3....1....4....1....2....3....1....2....1....4....3....3....4....1....2....1
..1....0....4....2....3....4....0....1....2....4....0....0....3....3....1....1
..2....4....2....1....0....4....0....4....2....2....3....3....0....1....3....3
..0....1....0....3....2....0....4....1....2....1....3....1....4....1....4....2
..0....1....3....1....1....0....0....0....1....2....2....3....1....0....4....3
		
Showing 1-10 of 10 results.