A250168 Number of length 3+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.
8, 37, 96, 211, 380, 639, 976, 1437, 2000, 2721, 3568, 4607, 5796, 7211, 8800, 10649, 12696, 15037, 17600, 20491, 23628, 27127, 30896, 35061, 39520, 44409, 49616, 55287, 61300, 67811, 74688, 82097, 89896, 98261, 107040, 116419, 126236, 136687, 147600
Offset: 1
Keywords
Examples
Some solutions for n=6: ..4....0....3....6....1....1....6....2....0....5....0....1....4....0....4....0 ..5....2....3....1....4....2....5....2....3....5....1....3....1....3....0....3 ..5....5....4....1....5....3....0....4....5....3....6....0....5....1....5....4 ..6....6....3....6....3....5....6....6....0....5....2....1....6....0....4....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A250167.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Empirical for n mod 2 = 0: a(n) = (29/12)*n^3 + (11/4)*n^2 + (17/6)*n + 1.
Empirical for n mod 2 = 1: a(n) = (29/12)*n^3 + (11/4)*n^2 + (19/12)*n + (5/4).
Empirical g.f.: x*(8 + 21*x + 14*x^2 + 14*x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2). - Colin Barker, Nov 12 2018