A250169 Number of length 4+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.
16, 119, 436, 1269, 2860, 5831, 10460, 17765, 27984, 42611, 61752, 87477, 119672, 161051, 211212, 273601, 347428, 436963, 540948, 664553, 805976, 971367, 1158288, 1373969, 1615248, 1890503, 2195780, 2540693, 2920396, 3345831, 3811180, 4328789
Offset: 1
Keywords
Examples
Some solutions for n=6: ..2....0....3....0....1....1....3....5....0....2....4....5....1....2....4....0 ..2....2....0....2....0....6....4....2....6....3....5....3....2....3....4....3 ..2....0....2....0....6....1....3....6....5....1....1....1....1....0....5....5 ..2....3....3....6....3....4....0....1....6....0....0....0....4....2....1....1 ..2....0....1....4....5....1....1....3....2....4....4....3....3....0....4....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A250167.
Formula
Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) - 2*a(n-5) + 2*a(n-7) + a(n-8) + a(n-9) - 2*a(n-10) - a(n-11) + a(n-12).
Empirical for n mod 12 = 0: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 1: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (57/16)
Empirical for n mod 12 = 2: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n - (1/3)
Empirical for n mod 12 = 3: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (73/16)
Empirical for n mod 12 = 4: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 5: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (235/48)
Empirical for n mod 12 = 6: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 7: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (73/16)
Empirical for n mod 12 = 8: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n - (1/3)
Empirical for n mod 12 = 9: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (57/16)
Empirical for n mod 12 = 10: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 11: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (283/48).
Empirical g.f.: x*(16 + 103*x + 285*x^2 + 611*x^3 + 854*x^4 + 1020*x^5 + 852*x^6 + 612*x^7 + 274*x^8 + 101*x^9 - x^10 + x^11) / ((1 - x)^5*(1 + x)^3*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Nov 12 2018