cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250169 Number of length 4+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

16, 119, 436, 1269, 2860, 5831, 10460, 17765, 27984, 42611, 61752, 87477, 119672, 161051, 211212, 273601, 347428, 436963, 540948, 664553, 805976, 971367, 1158288, 1373969, 1615248, 1890503, 2195780, 2540693, 2920396, 3345831, 3811180, 4328789
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2014

Keywords

Examples

			Some solutions for n=6:
..2....0....3....0....1....1....3....5....0....2....4....5....1....2....4....0
..2....2....0....2....0....6....4....2....6....3....5....3....2....3....4....3
..2....0....2....0....6....1....3....6....5....1....1....1....1....0....5....5
..2....3....3....6....3....4....0....1....6....0....0....0....4....2....1....1
..2....0....1....4....5....1....1....3....2....4....4....3....3....0....4....2
		

Crossrefs

Row 4 of A250167.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) - 2*a(n-5) + 2*a(n-7) + a(n-8) + a(n-9) - 2*a(n-10) - a(n-11) + a(n-12).
Empirical for n mod 12 = 0: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 1: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (57/16)
Empirical for n mod 12 = 2: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n - (1/3)
Empirical for n mod 12 = 3: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (73/16)
Empirical for n mod 12 = 4: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 5: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (235/48)
Empirical for n mod 12 = 6: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 7: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (73/16)
Empirical for n mod 12 = 8: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n - (1/3)
Empirical for n mod 12 = 9: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (57/16)
Empirical for n mod 12 = 10: a(n) = (197/48)*n^4 + (5/12)*n^3 + (45/4)*n^2 + (8/3)*n + 1
Empirical for n mod 12 = 11: a(n) = (197/48)*n^4 + (5/12)*n^3 + (69/8)*n^2 + (77/12)*n - (283/48).
Empirical g.f.: x*(16 + 103*x + 285*x^2 + 611*x^3 + 854*x^4 + 1020*x^5 + 852*x^6 + 612*x^7 + 274*x^8 + 101*x^9 - x^10 + x^11) / ((1 - x)^5*(1 + x)^3*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Nov 12 2018