A250170 Number of length 5+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero.
32, 373, 1880, 7109, 19896, 49037, 103556, 203615, 364900, 624811, 1006084, 1570791, 2347840, 3431579, 4856212, 6757417, 9171308, 12285541, 16134624, 20968689, 26816804, 34003157, 42544984, 52855367, 64932468, 79290519, 95903144
Offset: 1
Keywords
Examples
Some solutions for n=6 ..6....3....3....3....4....6....4....3....5....1....6....4....1....0....6....3 ..3....1....0....1....6....4....3....3....1....5....6....3....4....0....4....5 ..1....6....2....2....5....6....0....2....2....5....4....3....5....3....1....1 ..0....2....4....4....0....0....3....4....3....4....0....2....3....1....2....1 ..5....1....1....6....2....0....5....2....1....3....4....1....4....2....6....1 ..6....1....5....3....2....6....6....3....1....5....6....2....3....0....6....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..66
Formula
Empirical: a(n) = a(n-2) +a(n-3) +2*a(n-4) -a(n-6) -3*a(n-7) -3*a(n-8) -a(n-9) +3*a(n-11) +4*a(n-12) +3*a(n-13) -a(n-15) -3*a(n-16) -3*a(n-17) -a(n-18) +2*a(n-20) +a(n-21) +a(n-22) -a(n-24)
Empirical: also a polynomial of degree 5 plus a cubic quasipolynomial with period 60, the first 12 being:
Empirical for n mod 60 = 0: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n + 1
Empirical for n mod 60 = 1: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (223/64)*n + (457247/8640)
Empirical for n mod 60 = 2: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (2339/36)*n + (7721/270)
Empirical for n mod 60 = 3: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (703/64)*n + (7753/64)
Empirical for n mod 60 = 4: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (1141/135)
Empirical for n mod 60 = 5: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (7639/576)*n + (217043/1728)
Empirical for n mod 60 = 6: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (157/10)
Empirical for n mod 60 = 7: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (703/64)*n + (893567/8640)
Empirical for n mod 60 = 8: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (2339/36)*n + (1223/27)
Empirical for n mod 60 = 9: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (223/64)*n + (24653/320)
Empirical for n mod 60 = 10: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (19639/216)*n^3 - (82547/720)*n^2 + (299/4)*n - (1531/54)
Empirical for n mod 60 = 11: a(n) = (6943/960)*n^5 - (1143/64)*n^4 + (74029/864)*n^3 - (133189/1440)*n^2 - (11959/576)*n + (1493887/8640)
Comments