This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250203 #63 Jun 23 2019 17:32:12 %S A250203 11,20,23,35,39,48,83,96,131,231,303,375,384,519,771,848,1400,1983, %T A250203 2280,2640,2715,3359,6144,7736,7911,11079,13224,16664,24263,36168, %U A250203 130439,406583 %N A250203 Numbers n such that the Phi_n(2) is the product of exactly two primes and is divisible by 2n+1. %C A250203 Here Phi_n is the n-th cyclotomic polynomial. %C A250203 Is this sequence infinite? %C A250203 Phi_n(2)/(2n+1) is only a probable prime for n > 16664. %C A250203 a(33) > 2000000. %C A250203 Subsequence of A005097 (2 * a(n) + 1 are all primes) %C A250203 Subsequence of A081858. %C A250203 2 * a(n) + 1 are in A115591. %C A250203 Primes in this sequence are listed in A239638. %C A250203 A085021(a(n)) = 2. %C A250203 All a(n) are congruent to 0 or 3 (mod 4). (A014601) %C A250203 All a(n) are congruent to 0 or 2 (mod 3). (A007494) %C A250203 Except the term 20, all even numbers in this sequence are divisible by 8. %H A250203 Eric Chen, Gord Palameta, <a href="https://oeis.org/A250197/a250197_2.txt">Factorization of Phi_n(2) for n up to 1280</a> %H A250203 Will Edgington, <a href="https://web.archive.org/web/20111107151843/http://www.garlic.com/~wedgingt/factoredM.txt">Factorization of completely factored Phi_n(2)</a> [from Internet Archive Wayback Machine] %H A250203 Henri Lifchitz and Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=%282%5Ea-1%29%2Fb&action=Search">PRP records. Search for (2^a-1)/b</a> %H A250203 Samuel Wagstaff, <a href="http://homes.cerias.purdue.edu/~ssw/cun/index.html">The Cunningham project</a> %e A250203 Phi_11(2) = 23 * 89 and 23 = 2 * 11 + 1, so 11 is in this sequence. %e A250203 Phi_35(2) = 71 * 122921 and 71 = 2 * 35 + 1, so 35 is in this sequence. %e A250203 Phi_48(2) = 97 * 673 and 97 = 2 * 48 + 1, so 48 is in this sequence. %t A250203 Select[Range[10000], PrimeQ[2*# + 1] && PowerMod[2, #, 2*# + 1] == 1 && %t A250203 PrimeQ[Cyclotomic[#, 2]/(2*#+1)] &] %o A250203 (PARI) isok(n) = if (((x=polcyclo(n, 2)) % (2*n+1) == 0) && (omega(x) == 2), print1(n, ", ")); \\ _Michel Marcus_, Mar 13 2015 %Y A250203 Cf. A239638, A085724, A072226, A005384, A005097, A081858, A014601, A014664, A001917, A115591. %K A250203 nonn,more,hard %O A250203 1,1 %A A250203 _Eric Chen_, Mar 13 2015