cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250207 The number of quartic terms in the multiplicative group modulo n.

This page as a plain text file.
%I A250207 #93 Aug 10 2023 02:21:55
%S A250207 1,1,1,1,1,1,3,1,3,1,5,1,3,3,1,1,4,3,9,1,3,5,11,1,5,3,9,3,7,1,15,2,5,
%T A250207 4,3,3,9,9,3,1,10,3,21,5,3,11,23,1,21,5,4,3,13,9,5,3,9,7,29,1,15,15,9,
%U A250207 4,3,5,33,4,11,3,35,3,18,9,5,9,15,3,39,1
%N A250207 The number of quartic terms in the multiplicative group modulo n.
%C A250207 In the character table of the multiplicative group modulo n there are phi(n) different characters. [This is made explicit for example by the number of rows in arXiv:1008.2547.] The set of the fourth powers of the characters in all representations has some cardinality, which defines the sequence.
%H A250207 Antti Karttunen, <a href="/A250207/b250207.txt">Table of n, a(n) for n = 1..10000</a>
%H A250207 R. J. Mathar, <a href="/A293482/a293482.pdf">Size of the Set of Residues of Integer Powers of Fixed Exponent</a>, (2017).
%H A250207 R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and prime zeta modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], 2010.
%H A250207 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_character">Dirichlet character</a>.
%F A250207 a(n) = A000010(n)/A073103(n).
%F A250207 Multiplicative with a(2^e) = 1 for e<=3; a(2^e) = 2^(e-4) for e>=4; a(p^e) = p^(e-1)*(p-1)/4 for e>=1 and p == 1 (mod 4); a(p^e) = p^(e-1)*(p-1)/2 for e>=1 and p == 3 (mod 4). (Derived from A073103.) - _R. J. Mathar_, Oct 13 2017
%e A250207 For n <= 6, the set of all characters in all representations consists of a subset of +1, -1, +i or -i. Their fourth powers are all +1, a single value, so a(n)=1 then.
%e A250207 For n=7, the set of characters is 1, -1, +-1/2 +- sqrt(3)*i/2, so their fourth powers are 1 or -1/2 +- sqrt(3)*i/2, which are three different values, so a(7)=3.
%e A250207 For n=11, the fourth powers of the characters may be 1, exp(+-2*i*Pi/5) or exp(+-4*i*Pi/5), which are 5 different values.
%p A250207 A250207 := proc(n)
%p A250207     numtheory[phi](n)/A073103(n) ;
%p A250207 end proc:
%t A250207 a[n_] := EulerPhi[n]/Count[Range[0, n-1]^4 - 1, k_ /; Divisible[k, n]];
%t A250207 Array[a, 80] (* _Jean-François Alcover_, Nov 20 2017 *)
%t A250207 f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 4] == 1, 4, 2]; f[2, e_] := If[e <= 3, 1, 2^(e - 4)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 10 2023 *)
%o A250207 (PARI) a(n)=my(f=factor(n)); prod(i=1,#f~, if(f[i,1]==2, 2^max(0,f[i,2]-4), f[i,1]^(f[i,2]-1)*(f[i,1]-1)/if(f[i,1]%4==1,4,2))) \\ _Charles R Greathouse IV_, Mar 02 2015
%Y A250207 Cf. A046073, A087692, A052273, A293482 - A293485.
%K A250207 easy,nonn,mult
%O A250207 1,7
%A A250207 _R. J. Mathar_, Mar 02 2015