A250211 Square array read by antidiagonals: A(m,n) = multiplicative order of m mod n, or 0 if m and n are not coprime.
1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 4, 1, 1, 0, 2, 0, 4, 0, 1, 1, 1, 0, 1, 2, 0, 3, 1, 1, 0, 1, 0, 0, 0, 6, 0, 1, 1, 1, 2, 2, 1, 2, 3, 2, 6, 1, 1, 0, 0, 0, 4, 0, 6, 0, 0, 0, 1, 1, 1, 1, 1, 4, 1, 2, 2, 3, 4, 10, 1, 1, 0, 2, 0, 2, 0, 0, 0, 6, 0, 5, 0, 1, 1, 1, 0, 2, 0, 0, 1, 2, 0, 0, 5, 0, 12, 1
Offset: 1
Examples
A(3,7) = 6 because: 3^0 = 1 (mod 7) 3^1 = 3 (mod 7) 3^2 = 2 (mod 7) 3^3 = 6 (mod 7) 3^4 = 4 (mod 7) 3^5 = 5 (mod 7) 3^6 = 1 (mod 7) ... And the period is 6, so A(3,7) = 6.
Crossrefs
Programs
-
Maple
f:= proc(m,n) if igcd(m,n) <> 1 then 0 elif n=1 then 1 else numtheory:-order(m,n) fi end proc: seq(seq(f(t-j,j),j=1..t-1),t=2..65); # Robert Israel, Dec 30 2014
-
Mathematica
a250211[m_, n_] = If[GCD[m, n] == 1, MultiplicativeOrder[m, n], 0] Table[a250211[t-j, j], {t, 2, 65}, {j, 1, t-1}]
Comments