cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250214 Number of values of k such that prime(n) divides A241601(k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 2, 0, 1, 1, 0, 1, 1, 3, 3, 0, 0, 0, 0, 1, 2, 3, 1, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 4, 0, 0, 1, 0, 1, 2, 2, 1, 2, 0, 1, 3, 3, 1, 0, 0, 1, 1, 3, 3, 2, 0, 0, 3, 1, 1
Offset: 1

Views

Author

Eric Chen, Dec 26 2014

Keywords

Comments

a(n) is called the weak irregular index of n-th prime, that is, the Bernoulli irregular index + Euler irregular index.
Prime(n) is a regular prime if and only if a(n) = 0.
Does every natural number appear in this sequence? For example, for the primes 491 and 1151, a(94) = a(190) = 4. (491 and 1151 are the only primes below 1800 with weak irregular index 4 or more.) However, does a(n) have a limit?

Examples

			a(8) = 1 since the 8th prime is 19, which divides A241601(11).
a(13) = 0 since the 13th prime is 41, a regular prime.
a(19) = 2 since the 19th prime is 67, which divides both A241601(27) and A241601(58).
		

Crossrefs