A250216 Weak irregular primes. A prime is weak irregular iff it is a Bernoulli irregular prime or an Euler irregular prime.
19, 31, 37, 43, 47, 59, 61, 67, 71, 79, 101, 103, 131, 137, 139, 149, 157, 193, 223, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 311, 347, 349, 353, 359, 373, 379, 389, 401, 409, 419, 421, 433, 461, 463, 467, 491, 509, 523, 541, 547, 557, 563, 571, 577, 587, 593
Offset: 1
Keywords
Links
- Peter Luschny, Irregular Bernoulli and Euler Primes.
- The Prime Pages, Irregular Primes
- The Prime Pages, Euler Irregular
Programs
-
Mathematica
pmax = 593; m0 = 200; dm = 100; b[n_] := Numerator[BernoulliB[2 n]/(2 n)]; c[n_] := Numerator[SeriesCoefficient[Log[Tan[x]+1/Cos[x]], {x, 0, 2n+1}]]; (* a1 = A241601 *) a1[0] = 1; a1[n_] := a1[n] = If[EvenQ[n], b[n/2] // Abs, c[(n - 1)/2]]; f[m_] := f[m] = Module[{}, aa = Table[a1[n], {n, 0, m}]; okQ[p_] := AnyTrue[aa, Divisible[#, p] &]; Reap[For[p = 2, p <= pmax, p = NextPrime[p], If[okQ[p], Sow[p]]]][[2, 1]]]; f[m = m0]; f[m = m + dm]; While[Print["m = ", m]; f[m] != f[m - dm], m = m + dm]; A250216 = f[m] (* Jean-François Alcover, Jul 23 2019 *)
Comments