cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250216 Weak irregular primes. A prime is weak irregular iff it is a Bernoulli irregular prime or an Euler irregular prime.

Original entry on oeis.org

19, 31, 37, 43, 47, 59, 61, 67, 71, 79, 101, 103, 131, 137, 139, 149, 157, 193, 223, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 311, 347, 349, 353, 359, 373, 379, 389, 401, 409, 419, 421, 433, 461, 463, 467, 491, 509, 523, 541, 547, 557, 563, 571, 577, 587, 593
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

Primes p which divide A241601(k) for some k.

Crossrefs

Programs

  • Mathematica
    pmax = 593; m0 = 200; dm = 100;
    b[n_] := Numerator[BernoulliB[2 n]/(2 n)];
    c[n_] := Numerator[SeriesCoefficient[Log[Tan[x]+1/Cos[x]], {x, 0, 2n+1}]];
    (* a1 = A241601 *) a1[0] = 1; a1[n_] := a1[n] = If[EvenQ[n], b[n/2] // Abs, c[(n - 1)/2]];
    f[m_] := f[m] = Module[{}, aa = Table[a1[n], {n, 0, m}]; okQ[p_] := AnyTrue[aa, Divisible[#, p] &]; Reap[For[p = 2, p <= pmax, p = NextPrime[p], If[okQ[p], Sow[p]]]][[2, 1]]];
    f[m = m0]; f[m = m + dm];
    While[Print["m = ", m]; f[m] != f[m - dm], m = m + dm];
    A250216 = f[m] (* Jean-François Alcover, Jul 23 2019 *)