A250229 T(n,k)=Number of length n+1 0..k arrays with the sum of the cubes of adjacent differences multiplied by some arrangement of +-1 equal to zero.
2, 3, 4, 4, 11, 8, 5, 20, 27, 16, 6, 33, 52, 79, 32, 7, 48, 89, 208, 223, 64, 8, 67, 132, 473, 704, 651, 128, 9, 88, 187, 872, 1785, 2720, 1907, 256, 10, 113, 248, 1519, 3496, 9437, 10952, 5639, 512, 11, 140, 321, 2392, 6367, 24888, 47953, 45888, 16967, 1024, 12, 171
Offset: 1
Examples
Table starts ....2.....3......4.......5........6.........7.........8..........9.........10 ....4....11.....20......33.......48........67........88........113........140 ....8....27.....52......89......132.......187.......248........321........400 ...16....79....208.....473......872......1519......2392.......3617.......5184 ...32...223....704....1785.....3496......6367.....10640......16909......25152 ...64...651...2720....9437....24888.....59415....120412.....222037.....374712 ..128..1907..10952...47953...144624....371227....838604....1732385....3243544 ..256..5639..45888..264473..1019568...3347259...8983896...21295973...45095084 ..512.16967.195516.1440243..6717892..25280899..78435176..215244983..519836920 .1024.52131.852260.8079297.47046932.217539879.789142896.2486304965.6802360404 ... Some solutions for n=6 k=4 ..4....2....2....2....3....2....0....2....2....2....1....3....1....2....2....4 ..3....1....1....3....0....3....2....1....0....0....4....0....0....4....1....0 ..1....0....3....2....2....3....3....4....0....4....1....1....0....3....1....4 ..3....3....1....1....0....1....3....1....2....0....3....0....3....3....0....2 ..0....1....2....0....0....0....3....3....4....2....2....3....4....2....2....0 ..3....4....1....3....3....2....1....4....2....4....0....0....4....2....2....3 ..2....2....0....0....3....2....2....2....2....2....1....3....1....0....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..181
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: [linear recurrence of order 9] for n>12
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=3: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2