cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250229 T(n,k)=Number of length n+1 0..k arrays with the sum of the cubes of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

2, 3, 4, 4, 11, 8, 5, 20, 27, 16, 6, 33, 52, 79, 32, 7, 48, 89, 208, 223, 64, 8, 67, 132, 473, 704, 651, 128, 9, 88, 187, 872, 1785, 2720, 1907, 256, 10, 113, 248, 1519, 3496, 9437, 10952, 5639, 512, 11, 140, 321, 2392, 6367, 24888, 47953, 45888, 16967, 1024, 12, 171
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2014

Keywords

Examples

			Table starts
....2.....3......4.......5........6.........7.........8..........9.........10
....4....11.....20......33.......48........67........88........113........140
....8....27.....52......89......132.......187.......248........321........400
...16....79....208.....473......872......1519......2392.......3617.......5184
...32...223....704....1785.....3496......6367.....10640......16909......25152
...64...651...2720....9437....24888.....59415....120412.....222037.....374712
..128..1907..10952...47953...144624....371227....838604....1732385....3243544
..256..5639..45888..264473..1019568...3347259...8983896...21295973...45095084
..512.16967.195516.1440243..6717892..25280899..78435176..215244983..519836920
.1024.52131.852260.8079297.47046932.217539879.789142896.2486304965.6802360404
...
Some solutions for n=6 k=4
..4....2....2....2....3....2....0....2....2....2....1....3....1....2....2....4
..3....1....1....3....0....3....2....1....0....0....4....0....0....4....1....0
..1....0....3....2....2....3....3....4....0....4....1....1....0....3....1....4
..3....3....1....1....0....1....3....1....2....0....3....0....3....3....0....2
..0....1....2....0....0....0....3....3....4....2....2....3....4....2....2....0
..3....4....1....3....3....2....1....4....2....4....0....0....4....2....2....3
..2....2....0....0....3....2....2....2....2....2....1....3....1....0....4....0
		

Crossrefs

Column 1 is A000079.
Row 2 is A212959.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: [linear recurrence of order 9] for n>12
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=3: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2