cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A250253 First row of spectral array W(gamma+1).

Original entry on oeis.org

1, 2, 3, 5, 7, 13, 20, 35, 55, 95, 149, 259, 408, 707, 1115, 1931, 3045, 5276, 8321, 14416, 22737, 39391, 62128, 107634, 169762, 294105, 463867, 803628, 1267494, 2195877, 3463371, 6000134, 9463505, 16395094
Offset: 1

Views

Author

Colin Barker, Nov 15 2014

Keywords

Comments

Gamma is Euler's (or Euler-Mascheroni) constant.

Crossrefs

Cf. A001620 (Gamma), A059555 (Corresponding Beatty sequence), A250254, A250255.

Programs

  • PARI
    \\ Row i of the generalized Wythoff array W(h),
    \\   where h is an irrational number between 1 and 2,
    \\   and m is the number of terms in the vectors a and b.
    row(h, i, m) = {
      if(h<=1 || h>=2, print("Invalid value for h"); return);
      my(
        a=vector(m, n, floor(n*h)),
        b=vector(m, n, floor(n*h/(h-1))),
        w=[a[a[i]], b[a[i]]],
        j=3
      );
      while(1,
        if(j%2==1,
          if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w))
        ,
          if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w))
        );
        j++
      )
    }
    allocatemem(10^9)
    row(Euler+1, 1, 10^7)

A250254 First row of spectral array W(gamma^2+1).

Original entry on oeis.org

1, 4, 5, 16, 21, 64, 85, 256, 341, 1024, 1365, 4097, 5462, 16393, 21854, 65594, 87448, 262467, 349915, 1050235, 1400150, 4202409, 5602558, 16815516
Offset: 1

Views

Author

Colin Barker, Nov 15 2014

Keywords

Comments

Gamma is Euler's (or Euler-Mascheroni) constant.

Crossrefs

Cf. A001620 (Gamma), A059557 (Corresponding Beatty sequence), A250253, A250255.

Programs

  • PARI
    \\ Row i of the generalized Wythoff array W(h),
    \\   where h is an irrational number between 1 and 2,
    \\   and m is the number of terms in the vectors a and b.
    row(h, i, m) = {
      if(h<=1 || h>=2, print("Invalid value for h"); return);
      my(
        a=vector(m, n, floor(n*h)),
        b=vector(m, n, floor(n*h/(h-1))),
        w=[a[a[i]], b[a[i]]],
        j=3
      );
      while(1,
        if(j%2==1,
          if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w))
        ,
          if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w))
        );
        j++
      )
    }
    allocatemem(10^9)
    row(Euler^2+1, 1, 10^7)
Showing 1-2 of 2 results.