This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250260 #16 Jun 24 2015 06:40:04 %S A250260 1,1,1,2,3,4,5,29,133,412,1041,2300,22991,170832,822198,3114489, %T A250260 10006375,141705439,1457872978,9522474417,48094772656,202808749375, %U A250260 3716808948931,48860589990687,403131250565618,2545098156762649,13287626090593750 %N A250260 The number of 5-alternating permutations of [n]. %C A250260 A sequence a(1), a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k). %H A250260 Alois P. Heinz, <a href="/A250260/b250260.txt">Table of n, a(n) for n = 0..500</a> %H A250260 R. P. Stanley, <a href="http://arxiv.org/abs/0912.4240">A survey of alternating permutations</a>, arXiv:0912.4240, page 17. %p A250260 # dowupP defined in A250259. %p A250260 A250260 :=proc(n) %p A250260 downupP(n,4) ; %p A250260 end proc: %p A250260 seq(A250260(n),n=0..20) ; %p A250260 # second Maple program: %p A250260 b:= proc(u, o, t) option remember; `if`(u+o=0, 1, %p A250260 `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 5)), j=1..u), %p A250260 add(b(u+j-1, o-j, irem(t+1, 5)), j=1..o))) %p A250260 end: %p A250260 a:= n-> b(0, n, 0): %p A250260 seq(a(n), n=0..35); # _Alois P. Heinz_, Nov 15 2014 %t A250260 b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 5]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 5]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Jun 24 2015, after _Alois P. Heinz_ *) %Y A250260 Cf. A065619 (2-alternating), A249402 (3-alternating), A250259 (4-alternating). %Y A250260 Column k=5 of A250261. %K A250260 nonn %O A250260 0,4 %A A250260 _R. J. Mathar_, Nov 15 2014