cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A250271 Number of length n+1 0..2 arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

3, 11, 27, 79, 255, 843, 2763, 8903, 28215, 88195, 272739, 836607, 2550735, 7742267, 23423355, 70695991, 213005415, 640982259, 1927141011, 5790335855, 17389881855, 52209491371, 156712360107, 470313240999, 1411308821655, 4234698216803, 12705705263043, 38120471232223
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Examples

			Some solutions for n=6:
..0....0....2....0....0....2....2....0....2....2....2....1....2....2....1....0
..1....1....1....2....0....1....1....1....0....2....1....2....0....2....1....1
..1....2....1....2....1....2....2....1....0....2....0....2....0....2....1....2
..2....1....2....0....1....0....1....2....1....0....0....0....0....0....1....2
..2....2....0....0....1....2....2....0....0....2....0....1....1....2....2....2
..0....2....2....1....1....0....1....1....1....1....1....2....0....1....2....1
..2....0....2....2....2....2....2....2....0....2....2....1....2....0....1....0
		

Crossrefs

Column 2 of A250277.

Formula

Empirical: a(n) = 9*a(n-1) - 31*a(n-2) + 51*a(n-3) - 40*a(n-4) + 12*a(n-5) for n>6.
Conjectures from Colin Barker, Nov 12 2018: (Start)
G.f.: x*(3 - 16*x + 21*x^2 + 24*x^3 - 60*x^4 + 24*x^5) / ((1 - x)^2*(1 - 2*x)^2*(1 - 3*x)).
a(n) = 5*3^(n-1) - (2^n-2)*n for n>1. (End)

A250272 Number of length n+1 0..3 arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

4, 20, 52, 240, 984, 4412, 20252, 91808, 406748, 1759740, 7455484, 31056840, 127719296, 520368940, 2106440916, 8489650480, 34118389900, 136865613068, 548408972596, 2195889958776, 8788865312160, 35167823753468, 140699850287804
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Column 3 of A250277

Examples

			Some solutions for n=6
..2....1....2....0....1....0....1....3....0....1....3....3....3....3....0....0
..3....3....0....2....0....1....3....2....2....1....3....0....0....1....3....2
..1....3....1....3....2....0....2....3....3....3....3....1....3....0....2....0
..0....3....3....2....3....1....0....0....2....3....1....0....1....0....1....1
..0....2....1....3....2....0....1....3....2....0....2....0....3....0....0....0
..2....3....3....2....2....2....0....2....2....1....3....3....1....3....3....0
..2....1....0....2....1....2....3....3....0....3....1....3....3....1....2....0
		

Formula

Empirical: a(n) = 22*a(n-1) -221*a(n-2) +1348*a(n-3) -5594*a(n-4) +16756*a(n-5) -37474*a(n-6) +63792*a(n-7) -83421*a(n-8) +83878*a(n-9) -64369*a(n-10) +37052*a(n-11) -15496*a(n-12) +4448*a(n-13) -784*a(n-14) +64*a(n-15) for n>18

A250273 Number of length n+1 0..4 arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

5, 33, 89, 581, 2909, 17885, 107387, 636197, 3664311, 20397261, 110088763, 579849133, 3000181901, 15332918889, 77721061539, 391879647949, 1969334263587, 9876322139993, 49468980310981, 247600089386801, 1238741942676679
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Column 4 of A250277

Examples

			Some solutions for n=6
..0....4....1....0....4....0....3....0....0....2....2....3....3....4....0....4
..1....2....0....3....3....1....0....1....0....0....4....4....1....3....4....2
..2....4....4....1....2....0....2....3....3....3....3....0....2....0....1....4
..4....1....1....0....3....2....3....0....4....3....2....2....3....1....2....1
..0....3....3....4....3....2....1....3....2....0....4....4....0....1....3....3
..4....0....3....2....2....3....3....4....4....2....3....1....3....4....4....1
..2....2....1....2....4....2....1....2....0....2....0....1....1....4....2....0
		

A250278 Number of length 3+1 0..n arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

8, 27, 52, 89, 140, 207, 288, 389, 504, 639, 780, 949, 1132, 1335, 1552, 1789, 2048, 2339, 2636, 2957, 3292, 3639, 4000, 4401, 4840, 5299, 5772, 6265, 6772, 7319, 7880, 8477, 9080, 9711, 10364, 11061, 11772, 12495, 13232, 14013, 14816, 15647, 16484
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Row 3 of A250277

Examples

			Some solutions for n=6
..4....1....4....4....2....6....5....3....5....1....2....1....1....5....6....5
..4....1....6....0....1....0....2....0....1....6....1....1....2....2....3....5
..1....1....6....4....2....6....5....3....6....1....1....3....1....6....6....6
..4....1....4....4....2....6....5....3....3....1....2....1....1....1....6....5
		

A250279 Number of length 4+1 0..n arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

16, 79, 240, 581, 1132, 1991, 3156, 4841, 7024, 9807, 13180, 17561, 22788, 28943, 36012, 44421, 53964, 65179, 77596, 91809, 107508, 124907, 143800, 165353, 188792, 214495, 242152, 272493, 305164, 341051, 379132, 420569, 464568, 511663, 561324
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Row 4 of A250277

Examples

			Some solutions for n=6
..0....2....0....3....2....0....5....1....0....2....6....6....0....0....2....4
..3....4....2....2....5....4....3....6....0....4....2....5....2....3....1....1
..1....1....4....5....3....0....5....1....0....3....0....4....4....5....3....3
..4....2....3....2....1....0....4....2....2....4....6....2....3....6....2....2
..6....0....6....3....4....0....3....1....0....2....2....4....2....4....4....0
		

A250280 Number of length 5+1 0..n arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

32, 255, 984, 2909, 6732, 14003, 25964, 45303, 73272, 113219, 167020, 241875, 337136, 458733, 608948, 798189, 1024476, 1301819, 1627356, 2017585, 2469124, 2993697, 3591100, 4292855, 5085744, 5985579, 6992960, 8133607, 9394016
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Row 5 of A250277

Examples

			Some solutions for n=6
..2....0....6....4....6....2....4....3....2....0....0....4....6....5....5....1
..3....3....4....6....0....4....4....0....2....3....3....1....0....6....4....4
..4....0....3....6....5....4....2....4....3....5....4....3....4....4....1....0
..3....3....3....3....3....6....3....3....2....3....1....2....4....2....3....5
..5....0....5....2....0....1....5....6....4....3....2....0....2....1....3....2
..4....0....4....0....4....6....2....5....2....0....6....0....6....1....5....5
		

A250274 Number of length n+1 0..5 arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

6, 48, 140, 1132, 6732, 51884, 381812, 2783500, 19762916, 135821156, 901633552, 5803821376, 36474619144, 225357234996, 1376605005684, 8348102460156
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Column 5 of A250277

Examples

			Some solutions for n=6
..4....4....2....0....0....5....1....3....4....1....3....0....2....3....0....0
..2....4....1....1....3....5....2....2....1....1....2....3....3....5....2....3
..4....0....2....5....5....2....5....3....5....5....2....2....5....5....3....0
..3....4....1....3....1....5....1....3....4....5....4....3....2....2....4....1
..1....1....5....1....2....4....2....2....4....4....5....3....5....0....3....5
..2....4....2....1....1....4....4....1....1....0....5....3....1....4....5....4
..0....4....0....4....0....3....1....3....0....1....3....0....2....3....2....4
		

A250275 Number of length n+1 0..6 arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

7, 67, 207, 1991, 14003, 130335, 1154141, 10172515, 86975297, 715749943, 5655832367, 43083514447, 318775210489, 2309920909887
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Column 6 of A250277

Examples

			Some solutions for n=6
..2....1....2....2....2....4....4....4....3....6....2....4....2....4....6....0
..4....2....3....4....3....1....0....3....1....1....4....2....2....4....3....2
..0....0....0....6....6....4....6....6....6....6....1....3....1....4....2....5
..4....2....0....1....5....6....2....4....4....3....0....5....5....1....6....4
..3....3....2....4....5....3....5....2....4....5....1....0....4....5....1....1
..0....0....4....5....2....5....4....3....5....6....0....6....1....0....5....2
..2....3....0....0....6....2....6....4....1....4....2....4....6....0....4....0
		

A250276 Number of length n+1 0..7 arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

8, 88, 288, 3156, 25964, 281552, 2908232, 30143732, 301550620, 2901853512, 26702134812, 235590646376
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Column 7 of A250277

Examples

			Some solutions for n=5
..6....5....7....7....0....3....2....5....0....7....0....1....5....6....6....6
..4....4....1....0....5....7....3....2....2....3....0....5....2....7....3....4
..6....1....6....0....3....2....5....2....1....6....6....1....6....7....7....0
..7....1....6....7....1....4....5....5....1....4....0....3....1....4....3....3
..4....4....1....6....0....5....3....2....2....3....3....5....5....1....3....2
..4....5....7....5....4....7....4....5....4....1....6....5....1....2....6....4
		

A250281 Number of length 6+1 0..n arrays with the sum of the squares of adjacent differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

64, 843, 4412, 17885, 51884, 130335, 281552, 564985, 1028832, 1775463, 2887804, 4568929, 6917108, 10184331, 14530168, 20394445, 27913864, 37658171, 49810736, 65176853, 83924392, 106914955, 134435648, 168004421, 207572064
Offset: 1

Views

Author

R. H. Hardin, Nov 16 2014

Keywords

Comments

Row 6 of A250277

Examples

			Some solutions for n=6
..2....5....5....4....4....6....3....6....3....1....6....0....0....5....3....6
..2....4....3....3....1....3....0....4....3....4....4....0....1....3....0....4
..5....2....3....3....0....2....3....2....4....6....1....4....6....4....1....2
..4....3....4....2....0....4....1....3....4....3....1....1....0....5....4....0
..4....6....2....3....2....0....4....5....3....1....3....3....1....2....2....2
..1....4....1....2....6....4....6....3....6....3....6....1....4....6....1....1
..2....3....1....4....4....6....3....2....3....5....6....2....4....5....5....4
		
Showing 1-10 of 11 results. Next