This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250283 #27 Aug 01 2023 12:13:59 %S A250283 1,1,1,1,1,1,1,6,27,83,209,461,923,10284,80991,414961,1671853,5699149, %T A250283 17116009,278723178,3135810159,22493048843,124606826189,574688719793, %U A250283 2301250545971,49308397822776,721175428306971,6650954153090521,46893517738791361 %N A250283 Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 6). %H A250283 Alois P. Heinz, <a href="/A250283/b250283.txt">Table of n, a(n) for n = 0..500</a> %H A250283 Ludwig Seidel, <a href="https://babel.hathitrust.org/cgi/pt?id=hvd.32044092897461&view=1up&seq=176">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the <a href="https://www.hathitrust.org/accessibility">HATHI TRUST Digital Library</a>] %H A250283 Ludwig Seidel, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1877_0157-0187.pdf">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through <a href="https://de.wikipedia.org/wiki/ZOBODAT">ZOBODAT</a>] %e A250283 a(6) = 1: 123456. %e A250283 a(7) = 6: 1234576, 1234675, 1235674, 1245673, 1345672, 2345671. %p A250283 b:= proc(u, o, t) option remember; `if`(u+o=0, 1, %p A250283 `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 6)), j=1..u), %p A250283 add(b(u+j-1, o-j, irem(t+1, 6)), j=1..o))) %p A250283 end: %p A250283 a:= n-> b(n, 0$2): %p A250283 seq(a(n), n=0..35); %t A250283 nmax = 30; CoefficientList[Series[1 + Sum[(x^(6 - k) * HypergeometricPFQ[{1}, {7/6 - k/6, 4/3 - k/6, 3/2 - k/6, 5/3 - k/6, 11/6 - k/6, 2 - k/6}, -x^6/46656])/(6 - k)!, {k, 0, 5}] / HypergeometricPFQ[{}, {1/6, 1/3, 1/2, 2/3, 5/6}, -x^6/46656], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Apr 21 2021 *) %o A250283 (Sage) %o A250283 # From _Peter Luschny_, Feb 06 2017 (Start) %o A250283 @cached_function %o A250283 def b(u, o, t): %o A250283 if u ==-o: return 1 %o A250283 if t == 0: return sum(b(u-j, o+j-1, (t+1) % 6) for j in (1..u)) %o A250283 return sum(b(u+j-1, o-j, (t+1) % 6) for j in (1..o)) %o A250283 a = lambda n: b(n, 0, 0) %o A250283 print([a(n) for n in (0..28)]) # after Maple program %o A250283 # Alternatively: %o A250283 @cached_function %o A250283 def A(m, n): %o A250283 if n == 0: return 1 %o A250283 s = -1 if m.divides(n) else 1 %o A250283 t = [m*k for k in (0..(n-1)//m)] %o A250283 return s*add(binomial(n, k)*A(m, k) for k in t) %o A250283 A250283 = lambda n: (-1)^int(is_odd(n//6))*A(6, n) %o A250283 print([A250283(n) for n in (0..28)]) %o A250283 # (End) %Y A250283 Row n=6 of A181937. %K A250283 nonn %O A250283 0,8 %A A250283 _Alois P. Heinz_, Nov 16 2014