cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250292 Numbers k such that Pell(k) is a semiprime.

This page as a plain text file.
%I A250292 #62 Dec 01 2019 10:57:28
%S A250292 7,9,17,19,23,43,47,67,73,83,103,109,139,149,157,173,179,223,239,281,
%T A250292 311,313,349,431,557,569,577,587
%N A250292 Numbers k such that Pell(k) is a semiprime.
%C A250292 a(29) >= 709. - _Hugo Pfoertner_, Jul 29 2019
%C A250292 859, 937, 1087, 1151, and 1193 belong to the sequence. 709 and 787 have not yet been ruled out. The next candidate after these appears to be 1471. - _Daniel M. Jensen_, Oct 18 2019
%H A250292 FactorDB, <a href="http://factordb.com/index.php?id=1100000000707746051">Status of Pell(709)</a>.
%H A250292 FactorDB, <a href="http://factordb.com/index.php?id=1100000000712605734">Status of Pell(787)</a>.
%e A250292 17 is a term since Pell(17) = 1136689 = 137 * 8297 is a semiprime.
%p A250292 pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember):
%p A250292 filter:= proc(n) local F,f;
%p A250292    F:= ifactors(pell(n),easy)[2];
%p A250292    if add(f[2],f=F) > 2 then return false fi;
%p A250292    if hastype(F,symbol) then
%p A250292      if add(f[2],f=F) >= 2 then return false fi;
%p A250292    else return evalb(add(f[2],f=F)=2)
%p A250292    fi;
%p A250292    F:= ifactors(pell(n))[2];
%p A250292    evalb(add(f[2],f=F)=2)
%p A250292 end proc:
%p A250292 select(filter, [$1..230]); # _Robert Israel_, Jan 18 2016
%t A250292 a[0] = 0; a[1] = 1; a[n_] := a[n] = 2 a[n - 1] + a[n - 2]; Select[Range[0, 160], PrimeOmega@ a@ # == 2 &] (* _Michael De Vlieger_, Jan 19 2016 *)
%Y A250292 Cf. A001358, A096650, A072381, A085726, A000129.
%K A250292 nonn,more,hard
%O A250292 1,1
%A A250292 _Eric Chen_, Dec 24 2014
%E A250292 a(22)-a(23) from _Daniel M. Jensen_, Jan 18 2016
%E A250292 a(24) from _Arkadiusz Wesolowski_, Jan 19 2016
%E A250292 a(25)-a(27) from _Sean A. Irvine_, Jul 17 2017
%E A250292 a(28) from _Sean A. Irvine_, Jan 24 2018