A250312 Numbers which produce primes if their divisors, one by one, are prepended, inserted or appended.
1, 151, 157, 169, 223, 277, 283, 337, 361, 367, 397, 409, 421, 439, 457, 469, 547, 571, 577, 589, 607, 643, 673, 709, 757, 769, 793, 871, 877, 937, 1063, 1093, 1201, 1603, 1609, 1807, 2029, 2053, 2071, 2707, 3019, 3037, 3049, 3073, 3109, 3607, 4039, 4051, 4087
Offset: 1
Examples
Divisors of 1 is 1 and concat(1,1) = 11 is prime. Divisors of 151 are 1, 151. Then concat(151,1) = 1511 is prime, as is concat(1,151) = 1151, and concat(1,151,51) = 115151 is prime. Divisors of 169 are 1, 13, 169. Then concat(16,1,9) = 1619 is prime, concat(16,13,9) = 16139 is prime, as is concat(1,13,69) = 11369, and concat(1,169,69) = 116969 is prime.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Crossrefs
CF. A250311.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,f,g,h,j,k,n; for n from 1 by 2 to q do a:=divisors(n); h:=0; for k from 1 to nops(a) do b:=ilog10(a[k])+1; for j from 0 to ilog10(n)+1 do f:=(n mod 10^j); if j=0 then c:=n*10^b+a[k]; else g:=a[k]*10^(ilog10(f)+1)+f; c:=trunc(n/10^j)*10^(ilog10(g)+1)+g; fi; if isprime(c) then h:=h+1; break; fi; od; if h=nops(a) then print(n); fi; od; od; end: P(10^6);
Extensions
Inserted a(3), a(16) and a(26) by Paolo P. Lava, Nov 21 2014