cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250320 T(n,k)=Number of length n+2 0..k arrays with the sum of second differences squared multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

2, 5, 8, 8, 25, 8, 13, 60, 41, 24, 18, 117, 104, 161, 42, 25, 200, 233, 652, 487, 104, 32, 321, 436, 1773, 2432, 1689, 212, 41, 480, 745, 3916, 8767, 12820, 5849, 464, 50, 681, 1152, 7969, 24126, 57833, 61092, 19981, 950, 61, 940, 1733, 14452, 57305, 197848
Offset: 1

Views

Author

R. H. Hardin, Nov 18 2014

Keywords

Comments

Table starts
....2......5.......8.......13........18.........25.........32........41
....8.....25......60......117.......200........321........480.......681
....8.....41.....104......233.......436........745.......1152......1733
...24....161.....652.....1773......3916.......7969......14452.....24293
...42....487....2432.....8767.....24126......57305.....119004....228401
..104...1689...12820....57833....197848.....558541....1357424...2953265
..212...5849...61092...363457...1559080....5237161...14866258..37065983
..464..19981..300616..2317841..12424332...50020061..166783380.476368553
..950..67459.1423966.14305925..95711098..461868677.1809575752
.1968.221953.6523576.85334033.709795516.4110975765

Examples

			Some solutions for n=5 k=4
..2....2....4....4....0....3....1....4....2....1....4....0....4....4....2....2
..3....3....3....4....2....4....0....3....4....1....2....0....0....4....2....1
..2....0....3....1....0....0....2....0....3....0....2....2....2....3....2....1
..1....4....0....0....1....4....4....1....4....1....0....4....1....4....1....0
..4....1....1....0....3....0....2....0....3....0....2....0....3....0....3....4
..3....2....0....2....4....1....4....1....2....2....3....0....2....2....3....2
..4....3....1....0....2....2....3....4....4....4....1....4....4....0....1....3
		

Crossrefs

Row 1 is A000982(n+1)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -6*a(n-3) +3*a(n-4) +3*a(n-5) -2*a(n-6)
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8); also a cubic polynomial plus a linear quasipolynomial with period 3