A250361 T(n,k)=Number of length n arrays x(i), i=1..n with x(i) in i..i+k and no value appearing more than 3 times.
2, 3, 4, 4, 9, 8, 5, 16, 27, 16, 6, 25, 64, 81, 32, 7, 36, 125, 255, 243, 64, 8, 49, 216, 623, 1016, 729, 128, 9, 64, 343, 1293, 3094, 4048, 2187, 256, 10, 81, 512, 2397, 7712, 15365, 16128, 6561, 512, 11, 100, 729, 4091, 16700, 45866, 76300, 64257, 19683, 1024, 12
Offset: 1
Examples
Some solutions for n=6 k=4 ..3....2....0....0....2....1....2....1....2....2....3....0....3....3....0....2 ..2....3....1....4....4....4....3....3....1....3....2....3....1....3....4....4 ..4....5....5....6....6....6....3....4....2....4....3....4....3....3....2....3 ..3....3....4....3....5....6....7....4....5....3....6....7....4....5....6....7 ..7....8....7....6....6....6....5....7....5....4....5....5....5....6....5....8 ..5....7....9....9....9....9....8....5....9....5....9....7....7....6....9....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..447
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1)
k=3: a(n) = 4*a(n-1) -a(n-4)
k=4: a(n) = 5*a(n-1) -2*a(n-4) -11*a(n-5) +a(n-8)
k=5: [order 13]
k=6: [order 25]
k=7: [order 56]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + 6*n^2 + 3*n + 3 for n>1
n=5: a(n) = n^5 + 5*n^4 + 10*n^3 + 5*n^2 + 17*n + 2 for n>2
n=6: a(n) = n^6 + 6*n^5 + 15*n^4 + 5*n^3 + 57*n^2 + 13*n + 1 for n>3
n=7: a(n) = n^7 + 7*n^6 + 21*n^5 + 147*n^3 + 49*n^2 + 7*n for n>4
Comments