cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250361 T(n,k)=Number of length n arrays x(i), i=1..n with x(i) in i..i+k and no value appearing more than 3 times.

Original entry on oeis.org

2, 3, 4, 4, 9, 8, 5, 16, 27, 16, 6, 25, 64, 81, 32, 7, 36, 125, 255, 243, 64, 8, 49, 216, 623, 1016, 729, 128, 9, 64, 343, 1293, 3094, 4048, 2187, 256, 10, 81, 512, 2397, 7712, 15365, 16128, 6561, 512, 11, 100, 729, 4091, 16700, 45866, 76300, 64257, 19683, 1024, 12
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Comments

Table starts
....2.....3.......4.......5........6.........7..........8..........9.........10
....4.....9......16......25.......36........49.........64.........81........100
....8....27......64.....125......216.......343........512........729.......1000
...16....81.....255.....623.....1293......2397.......4091.......6555.......9993
...32...243....1016....3094.....7712.....16700......32608......58826......99704
...64...729....4048...15365....45866....115963.....259106.....526505.....992530
..128..2187...16128...76300...272760....803382....2052904....4698744....9854280
..256..6561...64257..378880..1621963...5565230...16234706...41828450...97581710
..512.19683..256012.1881364..9644496..38548644..128373416..371780050..964209084
.1024.59049.1020000.9342081.57346376.266998350.1015004124.3304106808.9514922752

Examples

			Some solutions for n=6 k=4
..3....2....0....0....2....1....2....1....2....2....3....0....3....3....0....2
..2....3....1....4....4....4....3....3....1....3....2....3....1....3....4....4
..4....5....5....6....6....6....3....4....2....4....3....4....3....3....2....3
..3....3....4....3....5....6....7....4....5....3....6....7....4....5....6....7
..7....8....7....6....6....6....5....7....5....4....5....5....5....6....5....8
..5....7....9....9....9....9....8....5....9....5....9....7....7....6....9....5
		

Crossrefs

Column 1 is A000079
Column 2 is A000244
Column 3 is A206450
Row 1 is A000027(n+1)
Row 2 is A000290(n+1)
Row 3 is A000578(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1)
k=3: a(n) = 4*a(n-1) -a(n-4)
k=4: a(n) = 5*a(n-1) -2*a(n-4) -11*a(n-5) +a(n-8)
k=5: [order 13]
k=6: [order 25]
k=7: [order 56]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + 6*n^2 + 3*n + 3 for n>1
n=5: a(n) = n^5 + 5*n^4 + 10*n^3 + 5*n^2 + 17*n + 2 for n>2
n=6: a(n) = n^6 + 6*n^5 + 15*n^4 + 5*n^3 + 57*n^2 + 13*n + 1 for n>3
n=7: a(n) = n^7 + 7*n^6 + 21*n^5 + 147*n^3 + 49*n^2 + 7*n for n>4