cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250362 Number of length 4 arrays x(i), i=1..4 with x(i) in i..i+n and no value appearing more than 3 times.

Original entry on oeis.org

16, 81, 255, 623, 1293, 2397, 4091, 6555, 9993, 14633, 20727, 28551, 38405, 50613, 65523, 83507, 104961, 130305, 159983, 194463, 234237, 279821, 331755, 390603, 456953, 531417, 614631, 707255, 809973, 923493, 1048547, 1185891, 1336305
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2014

Keywords

Examples

			Some solutions for n=6:
..1....2....1....3....1....5....3....5....0....0....5....0....5....3....2....4
..2....3....5....7....4....6....4....3....3....2....6....5....4....4....4....6
..8....4....2....5....2....8....7....2....6....5....4....7....6....7....3....2
..3....6....6....9....9....6....7....4....8....7....5....6....7....9....4....9
		

Crossrefs

Row 4 of A250361.

Formula

Empirical: a(n) = n^4 + 4*n^3 + 6*n^2 + 3*n + 3 for n>1.
Conjectures from Colin Barker, Nov 13 2018: (Start)
G.f.: x*(16 + x + 10*x^2 - 2*x^3 - 2*x^4 + x^5) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)