A250392 Number of length 6+3 0..n arrays with no four consecutive terms having the maximum of any two terms equal to the minimum of the remaining two terms.
6, 966, 26578, 309452, 2160160, 10755158, 42158796, 138336744, 395723154, 1015071750, 2382851790, 5197343476, 10655843900, 20723014006, 38504379320, 68753342352, 118544772606, 198153311046, 322179959658, 510976323420
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0....2....2....1....0....2....2....0....3....0....1....0....0....0....2....1 ..2....3....0....3....1....0....0....2....0....1....0....3....1....0....0....3 ..3....3....2....3....0....1....0....1....3....0....0....2....3....3....2....3 ..0....2....1....2....2....3....3....3....0....2....2....0....2....2....0....2 ..1....1....0....0....3....2....1....0....2....3....3....1....0....0....3....0 ..3....3....0....3....1....3....2....0....1....0....3....3....3....1....3....3 ..3....3....3....0....0....1....0....2....2....1....0....2....3....2....2....1 ..0....0....1....3....0....3....3....1....1....0....0....3....0....0....0....3 ..0....1....0....0....2....0....0....3....3....1....2....2....1....2....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = n^9 - (7/30)*n^8 + (1229/315)*n^7 - (23/30)*n^6 + (49/36)*n^5 + (67/30)*n^4 - (493/180)*n^3 + (53/30)*n^2 - (11/21)*n.
Conjectures from Colin Barker, Aug 20 2017: (Start)
G.f.: 2*x*(3 + 453*x + 8594*x^2 + 43211*x^3 + 73495*x^4 + 45443*x^5 + 9692*x^6 + 549*x^7) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
Comments