This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250401 #19 Nov 06 2017 04:58:27 %S A250401 1,9,197,503,6623,17813,340527,3763087,169947523,170436583,5295982873, %T A250401 90208585541,3343268872217,3348036962687,144143598106421, %U A250401 1659445372263179,11627213232841853,3879029288899801,352907045903771,10241306344308349,208368821623076563 %N A250401 Denominator of the harmonic mean of the first n nonzero octagonal numbers. %C A250401 a(n+1), for n >= 0, is also the numerator of the partial sums of the reciprocal octagonal numbers Sum_{k=0..n} 1/((k + 1)*(3*k + 1)) with the denominators given in A294512(n) [assuming that n+1 divides A250400(n+1) to give A294512(n) for n >= 0]. - _Wolfdieter Lang_, Nov 01 2017 %H A250401 Colin Barker, <a href="/A250401/b250401.txt">Table of n, a(n) for n = 1..1000</a> %F A250401 Denominator of 12*n/(Pi*sqrt(3) + 9*log(3) + 6*Psi(n+1/3) - 6*Psi(n+1)). - _Robert Israel_, Nov 01 2017 %e A250401 a(3) = 197 because the octagonal numbers A000567(n), for n = 1..3, are [1,8,21], and 3/(1/1 + 1/8 + 1/21) = 504/197. %p A250401 f:= n -> denom(n/add(1/(k*(3*k-2)),k=1..n)): %p A250401 map(f, [$1..40]); # _Robert Israel_, Nov 01 2017 %t A250401 With[{s = Array[PolygonalNumber[8, #] &, 21]}, Denominator@ Array[HarmonicMean@ Take[s, #] &, Length@ s]] (* _Michael De Vlieger_, Nov 01 2017 *) %o A250401 (PARI) %o A250401 harmonicmean(v) = #v / sum(k=1, #v, 1/v[k]) %o A250401 s=vector(30); for(n=1, #s, s[n]=denominator(harmonicmean(vector(n, k, 3*k^2-2*k)))); s %Y A250401 Cf. A000567 (octagonal numbers), A250400 (numerators), A294512. %K A250401 nonn,frac,easy %O A250401 1,2 %A A250401 _Colin Barker_, Nov 21 2014