cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250413 Number of length n+1 0..2 arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

5, 17, 38, 125, 335, 1061, 3069, 9495, 28221, 86149, 258252, 782393, 2350442, 7090347, 21303611, 64109181, 192553620, 578665211, 1737374865, 5217197093, 15659477401, 47004010481, 141055441813, 423295193635, 1270118805510
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Examples

			Some solutions for n=6:
..2....0....1....2....2....2....2....2....0....2....2....0....1....0....2....1
..2....0....2....0....1....1....0....1....1....2....0....0....1....0....0....2
..1....0....1....2....0....0....1....1....2....1....1....1....0....1....2....1
..2....2....1....2....2....0....0....0....2....2....1....1....1....1....1....2
..1....0....2....2....2....0....0....0....0....2....0....1....2....2....0....0
..2....2....2....1....1....1....2....0....1....0....1....0....1....2....1....2
..0....0....2....1....0....1....0....1....2....0....1....0....2....2....1....1
		

Crossrefs

Column 2 of A250419.

Formula

Empirical: a(n) = 6*a(n-1) - 3*a(n-2) - 40*a(n-3) + 59*a(n-4) + 68*a(n-5) - 146*a(n-6) - 14*a(n-7) + 91*a(n-8) - 8*a(n-9) - 12*a(n-10).
Empirical g.f.: x*(5 - 13*x - 49*x^2 + 148*x^3 + 84*x^4 - 397*x^5 + 40*x^6 + 257*x^7 - 36*x^8 - 36*x^9) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 2*x - x^2 + x^3)*(1 - 3*x^2 - x^3)). - Colin Barker, Nov 14 2018