A250421 Number of length 4+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.
20, 125, 476, 1351, 3154, 6433, 11906, 20461, 33178, 51359, 76520, 110417, 155080, 212797, 286144, 378023, 491638, 630529, 798614, 1000157, 1239806, 1522639, 1854124, 2240161, 2687132, 3201853, 3791620, 4464263, 5228090, 6091937, 7065226
Offset: 1
Keywords
Examples
Some solutions for n=6: ..6....6....6....6....6....4....1....1....3....1....5....6....3....3....2....2 ..3....1....1....4....3....5....0....6....0....1....6....3....0....6....2....0 ..5....0....1....6....4....1....6....0....5....2....4....6....6....1....4....6 ..3....1....4....4....0....4....4....6....0....1....6....1....5....1....3....1 ..6....4....3....5....6....2....4....1....0....1....5....3....6....5....6....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A250419.
Formula
Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 9*a(n-4) + 12*a(n-5) - 9*a(n-6) + 6*a(n-7) - 6*a(n-8) + 4*a(n-9) - a(n-10).
Empirical for n mod 3 = 0: a(n) = (2/15)*n^5 + (92/27)*n^4 + (85/27)*n^3 + (68/9)*n^2 + (68/15)*n + 1.
Empirical for n mod 3 = 1: a(n) = (2/15)*n^5 + (92/27)*n^4 + (85/27)*n^3 + (68/9)*n^2 + (632/135)*n + (29/27).
Empirical for n mod 3 = 2: a(n) = (2/15)*n^5 + (92/27)*n^4 + (85/27)*n^3 + (68/9)*n^2 + (652/135)*n + (31/27).
Empirical g.f.: x*(20 + 45*x + 96*x^2 + 77*x^3 + 36*x^4 - 48*x^5 - 44*x^6 - 37*x^7 - x^9) / ((1 - x)^6*(1 + x + x^2)^2). - Colin Barker, Nov 14 2018