cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250422 Number of length 5+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

This page as a plain text file.
%I A250422 #6 Jul 23 2025 12:23:32
%S A250422 36,335,1693,5982,16790,39916,84094,161350,287910,484353,776742,
%T A250422 1196504,1781894,2577507,3636138,5017850,6792317,9037401,11842016,
%U A250422 15304097,19534144,24652517,30793639,38102572,46740025,56878092,68706116,82425513
%N A250422 Number of length 5+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.
%C A250422 Row 5 of A250419
%H A250422 R. H. Hardin, <a href="/A250422/b250422.txt">Table of n, a(n) for n = 1..206</a>
%F A250422 Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) -4*a(n-5) -a(n-6) -a(n-7) +4*a(n-8) +4*a(n-9) -a(n-10) -a(n-11) -4*a(n-12) +a(n-14) +a(n-15) +a(n-16) -a(n-17)
%F A250422 Empirical for n mod 12 = 0: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (211/72)*n + 1
%F A250422 Empirical for n mod 12 = 1: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (4903/3456)*n + (74825/20736)
%F A250422 Empirical for n mod 12 = 2: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (395/144)*n + (1633/1296)
%F A250422 Empirical for n mod 12 = 3: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1765/1152)*n + (953/256)
%F A250422 Empirical for n mod 12 = 4: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (649/216)*n + (92/81)
%F A250422 Empirical for n mod 12 = 5: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1549/1152)*n + (76105/20736)
%F A250422 Empirical for n mod 12 = 6: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (395/144)*n + (17/16)
%F A250422 Empirical for n mod 12 = 7: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (5551/3456)*n + (80009/20736)
%F A250422 Empirical for n mod 12 = 8: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (211/72)*n + (97/81)
%F A250422 Empirical for n mod 12 = 9: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1549/1152)*n + (889/256)
%F A250422 Empirical for n mod 12 = 10: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (1217/432)*n + (1553/1296)
%F A250422 Empirical for n mod 12 = 11: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1765/1152)*n + (81289/20736)
%e A250422 Some solutions for n=6
%e A250422 ..3....5....3....3....4....4....4....2....2....2....3....6....2....5....0....5
%e A250422 ..5....1....0....4....2....2....6....1....4....0....2....2....2....4....2....4
%e A250422 ..4....2....2....6....5....1....1....0....0....0....2....2....3....2....5....6
%e A250422 ..1....0....2....1....3....1....6....2....0....5....3....6....0....4....0....1
%e A250422 ..3....0....3....1....6....5....6....5....2....3....4....1....6....2....4....2
%e A250422 ..1....3....0....3....2....3....0....1....5....6....1....6....4....3....2....4
%K A250422 nonn
%O A250422 1,1
%A A250422 _R. H. Hardin_, Nov 22 2014