A250426 Number of (n+1)X(2+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.
36, 108, 324, 720, 1600, 3000, 5625, 9450, 15876, 24696, 38416, 56448, 82944, 116640, 164025, 222750, 302500, 399300, 527076, 679536, 876096, 1107288, 1399489, 1739010, 2160900, 2646000, 3240000, 3916800, 4734976, 5659776, 6765201, 8005878
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1 ..0..1..0....0..0..0....0..0..1....0..0..1....0..0..0....0..1..0....0..0..1 ..0..1..1....0..0..0....0..0..1....0..0..0....0..0..1....0..1..0....0..1..1 ..0..1..1....0..0..0....0..0..1....0..1..1....0..0..1....0..1..0....0..0..1 ..0..1..1....0..0..0....0..0..1....0..0..1....0..1..1....0..1..0....0..1..1 ..1..1..1....0..1..1....0..1..1....1..1..1....1..1..1....0..1..1....0..0..1 ..0..1..1....0..1..1....0..1..1....1..0..1....1..1..1....1..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A250432.
Formula
Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
Empirical for n mod 2 = 0: a(n) = (1/256)*n^6 + (11/128)*n^5 + (49/64)*n^4 + (113/32)*n^3 + (71/8)*n^2 + (23/2)*n + 6.
Empirical for n mod 2 = 1: a(n) = (1/256)*n^6 + (11/128)*n^5 + (199/256)*n^4 + (237/64)*n^3 + (2511/256)*n^2 + (1755/128)*n + (2025/256).
a(n+1)=A202093(n). - R. J. Mathar, Dec 04 2014
Empirical g.f.: x*(36 + 36*x - 36*x^2 + 124*x^4 - 20*x^5 - 115*x^6 + 40*x^7 + 56*x^8 - 26*x^9 - 11*x^10 + 6*x^11) / ((1 - x)^7*(1 + x)^5). - Colin Barker, Nov 14 2018