cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A250427 Number of (n+1)X(3+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

81, 324, 1296, 3600, 10000, 22500, 50625, 99225, 194481, 345744, 614656, 1016064, 1679616, 2624400, 4100625, 6125625, 9150625, 13176900, 18974736, 26501904, 37015056, 50381604, 68574961, 91298025, 121550625, 158760000, 207360000
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 3 of A250432

Examples

			Some solutions for n=6
..0..0..0..0....0..0..0..1....0..0..1..1....0..0..0..0....0..0..1..0
..0..0..1..1....0..0..0..0....0..0..1..0....0..0..0..1....0..0..1..0
..0..0..1..0....0..0..0..1....0..0..1..1....0..0..1..1....0..0..1..1
..0..0..1..1....0..0..0..1....0..0..1..0....0..0..0..1....1..0..1..0
..0..0..1..1....0..0..1..1....0..1..1..1....0..0..1..1....0..0..1..1
..1..0..1..1....0..0..1..1....1..0..1..0....0..0..0..1....1..0..1..0
..1..0..1..1....1..1..1..1....0..1..1..1....0..1..1..1....1..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)
Empirical for n mod 2 = 0: a(n) = (1/4096)*n^8 + (1/128)*n^7 + (55/512)*n^6 + (53/64)*n^5 + (1001/256)*n^4 + (185/16)*n^3 + (167/8)*n^2 + 21*n + 9
Empirical for n mod 2 = 1: a(n) = (1/4096)*n^8 + (1/128)*n^7 + (111/1024)*n^6 + (109/128)*n^5 + (8483/2048)*n^4 + (1635/128)*n^3 + (24975/1024)*n^2 + (3375/128)*n + (50625/4096).
a(n+1) = A202094(n). - R. J. Mathar, Dec 04 2014

A250429 Number of (n+1)X(5+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

256, 1600, 10000, 40000, 160000, 490000, 1500625, 3841600, 9834496, 22127616, 49787136, 101606400, 207360000, 392040000, 741200625, 1317690000, 2342560000, 3958926400, 6690585616, 10837642816, 17555190016, 27429984400, 42859350625
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 5 of A250432.

Examples

			Some solutions for n=5
..0..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..0..1....0..0..0..0..0..1
..0..0..1..1..1..1....0..0..0..0..1..1....0..0..0..0..1..1....0..0..1..0..1..0
..0..0..0..0..0..0....1..0..1..1..1..1....0..0..0..0..0..1....0..0..0..1..1..1
..0..0..1..1..1..1....1..0..1..0..1..1....0..0..0..1..1..1....0..0..1..1..1..1
..0..0..0..1..0..1....1..0..1..1..1..1....0..0..0..1..0..1....1..1..1..1..1..1
..1..0..1..1..1..1....1..1..1..1..1..1....0..0..0..1..1..1....0..0..1..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-2) -22*a(n-3) -44*a(n-4) +110*a(n-5) +110*a(n-6) -330*a(n-7) -165*a(n-8) +660*a(n-9) +132*a(n-10) -924*a(n-11) +924*a(n-13) -132*a(n-14) -660*a(n-15) +165*a(n-16) +330*a(n-17) -110*a(n-18) -110*a(n-19) +44*a(n-20) +22*a(n-21) -10*a(n-22) -2*a(n-23) +a(n-24)
Empirical for n mod 2 = 0: a(n) = (1/5308416)*n^12 + (5/442368)*n^11 + (407/1327104)*n^10 + (275/55296)*n^9 + (5933/110592)*n^8 + (415/1024)*n^7 + (182201/82944)*n^6 + (3715/432)*n^5 + (62483/2592)*n^4 + (2545/54)*n^3 + (731/12)*n^2 + (140/3)*n + 16
Empirical for n mod 2 = 1: a(n) = (1/5308416)*n^12 + (5/442368)*n^11 + (817/2654208)*n^10 + (2225/442368)*n^9 + (97157/1769472)*n^8 + (3455/8192)*n^7 + (3101111/1327104)*n^6 + (2080805/221184)*n^5 + (144963631/5308416)*n^4 + (24654385/442368)*n^3 + (7461475/98304)*n^2 + (3044125/49152)*n + (1500625/65536).
a(n+1) = A202096(n). - R. J. Mathar, Dec 02 2014

A250425 Number of (n+1) X (n+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

16, 108, 1296, 12000, 160000, 1715000, 24010000, 280052640, 4032758016, 49700008512, 728933458176, 9337998878208, 138735983333376, 1829038842774000, 27435582641610000, 369797030228340000, 5588044012339360000
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Diagonal of A250432.

Examples

			Some solutions for n=5
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..1..0
..0..0..0..0..1..0....0..0..0..1..0..1....0..0..0..0..1..1....0..0..0..1..1..1
..0..0..0..1..1..1....0..0..0..0..1..1....0..0..0..1..1..1....1..0..1..0..1..1
..0..0..0..0..1..0....0..0..0..1..1..1....0..1..1..1..1..1....0..1..0..1..1..1
..1..1..1..1..1..1....1..0..1..0..1..1....1..1..1..1..1..1....1..0..1..0..1..1
..0..0..0..1..1..1....1..0..1..1..1..1....0..1..1..1..1..1....0..1..0..1..1..1
		

Crossrefs

Formula

a(n+1) = A202092(n). - R. J. Mathar, Dec 04 2014

A250426 Number of (n+1)X(2+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

36, 108, 324, 720, 1600, 3000, 5625, 9450, 15876, 24696, 38416, 56448, 82944, 116640, 164025, 222750, 302500, 399300, 527076, 679536, 876096, 1107288, 1399489, 1739010, 2160900, 2646000, 3240000, 3916800, 4734976, 5659776, 6765201, 8005878
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Examples

			Some solutions for n=6:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1
..0..1..0....0..0..0....0..0..1....0..0..1....0..0..0....0..1..0....0..0..1
..0..1..1....0..0..0....0..0..1....0..0..0....0..0..1....0..1..0....0..1..1
..0..1..1....0..0..0....0..0..1....0..1..1....0..0..1....0..1..0....0..0..1
..0..1..1....0..0..0....0..0..1....0..0..1....0..1..1....0..1..0....0..1..1
..1..1..1....0..1..1....0..1..1....1..1..1....1..1..1....0..1..1....0..0..1
..0..1..1....0..1..1....0..1..1....1..0..1....1..1..1....1..1..1....1..1..1
		

Crossrefs

Column 2 of A250432.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
Empirical for n mod 2 = 0: a(n) = (1/256)*n^6 + (11/128)*n^5 + (49/64)*n^4 + (113/32)*n^3 + (71/8)*n^2 + (23/2)*n + 6.
Empirical for n mod 2 = 1: a(n) = (1/256)*n^6 + (11/128)*n^5 + (199/256)*n^4 + (237/64)*n^3 + (2511/256)*n^2 + (1755/128)*n + (2025/256).
a(n+1)=A202093(n). - R. J. Mathar, Dec 04 2014
Empirical g.f.: x*(36 + 36*x - 36*x^2 + 124*x^4 - 20*x^5 - 115*x^6 + 40*x^7 + 56*x^8 - 26*x^9 - 11*x^10 + 6*x^11) / ((1 - x)^7*(1 + x)^5). - Colin Barker, Nov 14 2018

A250428 Number of (n+1)X(4+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

144, 720, 3600, 12000, 40000, 105000, 275625, 617400, 1382976, 2765952, 5531904, 10160640, 18662400, 32076000, 55130625, 89842500, 146410000, 228399600, 356303376, 535927392, 806105664, 1175570760, 1714374025, 2434614000
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 4 of A250432

Examples

			Some solutions for n=6
..0..0..0..1..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..1....0..0..0..1..0....0..1..0..1..1....0..0..0..1..1
..0..0..1..1..1....0..0..0..1..0....0..0..0..0..0....0..0..1..0..1
..0..1..0..1..1....0..0..0..1..1....1..1..1..1..1....0..1..0..1..1
..1..0..1..1..1....0..1..0..1..1....0..0..1..0..1....1..0..1..0..1
..1..1..1..1..1....0..0..0..1..1....1..1..1..1..1....0..1..1..1..1
..1..1..1..1..1....0..1..0..1..1....0..0..1..1..1....1..0..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -18*a(n-3) -27*a(n-4) +72*a(n-5) +48*a(n-6) -168*a(n-7) -42*a(n-8) +252*a(n-9) -252*a(n-11) +42*a(n-12) +168*a(n-13) -48*a(n-14) -72*a(n-15) +27*a(n-16) +18*a(n-17) -8*a(n-18) -2*a(n-19) +a(n-20)
Empirical for n mod 2 = 0: a(n) = (1/147456)*n^10 + (23/73728)*n^9 + (13/2048)*n^8 + (77/1024)*n^7 + (1763/3072)*n^6 + (4525/1536)*n^5 + (5927/576)*n^4 + (3473/144)*n^3 + (145/4)*n^2 + (63/2)*n + 12
Empirical for n mod 2 = 1: a(n) = (1/147456)*n^10 + (23/73728)*n^9 + (941/147456)*n^8 + (1409/18432)*n^7 + (43777/73728)*n^6 + (115189/36864)*n^5 + (831857/73728)*n^4 + (169595/6144)*n^3 + (717525/16384)*n^2 + (333375/8192)*n + (275625/16384).
a(n+1)=A202095(n). - R. J. Mathar, Dec 04 2014

A250430 Number of (n+1)X(6+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

400, 3000, 22500, 105000, 490000, 1715000, 6002500, 17287200, 49787136, 124467840, 311169600, 698544000, 1568160000, 3234330000, 6670805625, 12847477500, 24743290000, 45032787800, 81959673796, 142244061960
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 6 of A250432.

Examples

			Some solutions for n=4
..0..0..1..1..1..1..1....0..0..0..1..1..1..1....0..0..0..0..0..0..1
..0..0..1..0..1..1..1....0..1..0..1..0..1..1....0..0..0..1..0..1..0
..1..0..1..1..1..1..1....1..0..1..1..1..1..1....0..1..1..1..1..1..1
..0..0..1..1..1..1..1....0..1..0..1..1..1..1....0..0..0..1..0..1..0
..1..0..1..1..1..1..1....1..1..1..1..1..1..1....0..1..1..1..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +12*a(n-2) -26*a(n-3) -65*a(n-4) +156*a(n-5) +208*a(n-6) -572*a(n-7) -429*a(n-8) +1430*a(n-9) +572*a(n-10) -2574*a(n-11) -429*a(n-12) +3432*a(n-13) -3432*a(n-15) +429*a(n-16) +2574*a(n-17) -572*a(n-18) -1430*a(n-19) +429*a(n-20) +572*a(n-21) -208*a(n-22) -156*a(n-23) +65*a(n-24) +26*a(n-25) -12*a(n-26) -2*a(n-27) +a(n-28)
Empirical for n mod 2 = 0: a(n) = (1/339738624)*n^14 + (13/56623104)*n^13 + (697/84934656)*n^12 + (2521/14155776)*n^11 + (55639/21233664)*n^10 + (97807/3538944)*n^9 + (1143251/5308416)*n^8 + (1113683/884736)*n^7 + (1838411/331776)*n^6 + (505009/27648)*n^5 + (919427/20736)*n^4 + (265331/3456)*n^3 + (4297/48)*n^2 + (377/6)*n + 20
Empirical for n mod 2 = 1: a(n) = (1/339738624)*n^14 + (13/56623104)*n^13 + (2795/339738624)*n^12 + (5081/28311552)*n^11 + (301475/113246208)*n^10 + (178667/6291456)*n^9 + (76312715/339738624)*n^8 + (18940223/14155776)*n^7 + (2048631355/339738624)*n^6 + (1158380483/56623104)*n^5 + (647048923/12582912)*n^4 + (292086865/3145728)*n^3 + (477479275/4194304)*n^2 + (177888375/2097152)*n + (121550625/4194304).
a(n+1) = A202097(n). - R. J. Mathar, Dec 02 2014

A250431 Number of (n+1)X(7+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

625, 5625, 50625, 275625, 1500625, 6002500, 24010000, 77792400, 252047376, 700131600, 1944810000, 4802490000, 11859210000, 26683222500, 60037250625, 125262905625, 261351000625, 512247961225, 1004006004001, 1866953313225
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 7 of A250432.

Examples

			Some solutions for n=3
..0..0..0..0..0..0..1..1....1..0..1..0..1..0..1..1....0..0..0..0..1..0..1..0
..0..1..1..1..1..1..1..1....0..0..1..0..1..0..1..1....1..0..1..0..1..1..1..1
..1..0..1..0..1..1..1..1....1..0..1..0..1..1..1..1....0..0..0..0..1..1..1..1
..1..1..1..1..1..1..1..1....1..0..1..1..1..1..1..1....1..1..1..1..1..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +14*a(n-2) -30*a(n-3) -90*a(n-4) +210*a(n-5) +350*a(n-6) -910*a(n-7) -910*a(n-8) +2730*a(n-9) +1638*a(n-10) -6006*a(n-11) -2002*a(n-12) +10010*a(n-13) +1430*a(n-14) -12870*a(n-15) +12870*a(n-17) -1430*a(n-18) -10010*a(n-19) +2002*a(n-20) +6006*a(n-21) -1638*a(n-22) -2730*a(n-23) +910*a(n-24) +910*a(n-25) -350*a(n-26) -210*a(n-27) +90*a(n-28) +30*a(n-29) -14*a(n-30) -2*a(n-31) +a(n-32)
Empirical for n mod 2 = 0: a(n) = (1/21743271936)*n^16 + (1/226492416)*n^15 + (89/452984832)*n^14 + (203/37748736)*n^13 + (2549/25165824)*n^12 + (1459/1048576)*n^11 + (1224205/84934656)*n^10 + (812447/7077888)*n^9 + (20096035/28311552)*n^8 + (2015611/589824)*n^7 + (3762023/294912)*n^6 + (149513/4096)*n^5 + (26016553/331776)*n^4 + (422071/3456)*n^3 + (12469/96)*n^2 + (505/6)*n + 25
Empirical for n mod 2 = 1: a(n) = (1/21743271936)*n^16 + (1/226492416)*n^15 + (535/2717908992)*n^14 + (1225/226492416)*n^13 + (185693/1811939328)*n^12 + (35725/25165824)*n^11 + (40404433/2717908992)*n^10 + (27184205/226492416)*n^9 + (8206068803/10871635968)*n^8 + (840056675/226492416)*n^7 + (476102705/33554432)*n^6 + (1052064899/25165824)*n^5 + (6239471239/67108864)*n^4 + (1265493285/8388608)*n^3 + (5650169175/33554432)*n^2 + (968932125/8388608)*n + (9845600625/268435456).
a(n+1) = A202098(n). - R. J. Mathar, Dec 02 2014
Showing 1-7 of 7 results.