cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A250440 Number of (n+1)X(5+1) 0..2 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

10000, 250000, 6250000, 76562500, 937890625, 7353062500, 57648010000, 332052537600, 1912622616576, 8782450790400, 40327580160000, 155600676000000, 600372506250000, 2017918701562500, 6782448969140625, 20377491125062500
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 5 of A250443

Examples

			Some solutions for n=1
..0..1..1..1..2..2....2..0..2..0..2..0....1..2..1..2..1..2....0..0..0..1..0..1
..0..0..2..1..2..1....0..1..1..1..1..1....0..1..0..1..1..2....0..0..0..2..2..2
		

Formula

Empirical: a(n) = 2*a(n-1) +22*a(n-2) -46*a(n-3) -230*a(n-4) +506*a(n-5) +1518*a(n-6) -3542*a(n-7) -7084*a(n-8) +17710*a(n-9) +24794*a(n-10) -67298*a(n-11) -67298*a(n-12) +201894*a(n-13) +144210*a(n-14) -490314*a(n-15) -245157*a(n-16) +980628*a(n-17) +326876*a(n-18) -1634380*a(n-19) -326876*a(n-20) +2288132*a(n-21) +208012*a(n-22) -2704156*a(n-23) +2704156*a(n-25) -208012*a(n-26) -2288132*a(n-27) +326876*a(n-28) +1634380*a(n-29) -326876*a(n-30) -980628*a(n-31) +245157*a(n-32) +490314*a(n-33) -144210*a(n-34) -201894*a(n-35) +67298*a(n-36) +67298*a(n-37) -24794*a(n-38) -17710*a(n-39) +7084*a(n-40) +3542*a(n-41) -1518*a(n-42) -506*a(n-43) +230*a(n-44) +46*a(n-45) -22*a(n-46) -2*a(n-47) +a(n-48)
Empirical for n mod 2 = 0: a(n) = (1/7213895789838336)*n^24 + (1/50096498540544)*n^23 + (1235/901736973729792)*n^22 + (4477/75144747810816)*n^21 + (831679/450868486864896)*n^20 + (812591/18786186952704)*n^19 + (1405627/1761205026816)*n^18 + (3100741/260919263232)*n^17 + (4094603551/28179280429056)*n^16 + (433465327/293534171136)*n^15 + (44306115959/3522410053632)*n^14 + (26501886041/293534171136)*n^13 + (964685807569/1761205026816)*n^12 + (68759134069/24461180928)*n^11 + (1341490699171/110075314176)*n^10 + (51007464301/1146617856)*n^9 + (935019035443/6879707136)*n^8 + (98748474923/286654464)*n^7 + (34174316941/47775744)*n^6 + (1189590079/995328)*n^5 + (129883723/82944)*n^4 + (41785/27)*n^3 + (156019/144)*n^2 + (1435/3)*n + 100
Empirical for n mod 2 = 1: a(n) = (1/7213895789838336)*n^24 + (1/50096498540544)*n^23 + (2473/1803473947459584)*n^22 + (8987/150289495621632)*n^21 + (6703097/3606947894919168)*n^20 + (6582733/150289495621632)*n^19 + (1467014557/1803473947459584)*n^18 + (203874037/16698832846848)*n^17 + (1087131080383/7213895789838336)*n^16 + (116367833311/75144747810816)*n^15 + (12047121885881/901736973729792)*n^14 + (7311600115943/75144747810816)*n^13 + (1082232553741855/1803473947459584)*n^12 + (78574511484559/25048249270272)*n^11 + (12519441818897777/901736973729792)*n^10 + (3896610583531693/75144747810816)*n^9 + (1172330828707213711/7213895789838336)*n^8 + (63675047896162255/150289495621632)*n^7 + (20207552719915925/22265110462464)*n^6 + (26209033583275375/16698832846848)*n^5 + (95114119934815625/44530220924928)*n^4 + (1361430919121875/618475290624)*n^3 + (443670923390625/274877906944)*n^2 + (51535776796875/68719476736)*n + (182401906640625/1099511627776)

A250437 Number of (n+1)X(2+1) 0..2 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

324, 2160, 14400, 60000, 250000, 787500, 2480625, 6482700, 16941456, 38723328, 88510464, 182891520, 377913600, 721710000, 1378265625, 2470668750, 4428902500, 7537186800, 12826921536, 20901168288, 34057964304, 53488469580, 84004327225
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 2 of A250443

Examples

			Some solutions for n=4
..0..2..0....0..0..1....0..0..0....0..1..0....0..1..0....1..0..2....0..1..0
..0..1..2....0..1..0....1..0..2....0..1..1....0..2..0....0..1..1....0..0..2
..0..2..2....1..2..1....0..1..1....1..1..2....0..1..1....1..1..2....0..1..1
..2..2..2....2..1..2....1..1..2....2..2..2....1..2..2....0..2..2....1..0..2
..0..2..2....1..2..2....1..2..1....1..1..2....1..1..1....2..1..2....1..1..2
		

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-2) -22*a(n-3) -44*a(n-4) +110*a(n-5) +110*a(n-6) -330*a(n-7) -165*a(n-8) +660*a(n-9) +132*a(n-10) -924*a(n-11) +924*a(n-13) -132*a(n-14) -660*a(n-15) +165*a(n-16) +330*a(n-17) -110*a(n-18) -110*a(n-19) +44*a(n-20) +22*a(n-21) -10*a(n-22) -2*a(n-23) +a(n-24)
Empirical for n mod 2 = 0: a(n) = (1/2359296)*n^12 + (7/294912)*n^11 + (355/589824)*n^10 + (449/49152)*n^9 + (4541/49152)*n^8 + (1007/1536)*n^7 + (123317/36864)*n^6 + (113887/9216)*n^5 + (9439/288)*n^4 + (5837/96)*n^3 + (1197/16)*n^2 + (219/4)*n + 18
Empirical for n mod 2 = 1: a(n) = (1/2359296)*n^12 + (7/294912)*n^11 + (713/1179648)*n^10 + (2729/294912)*n^9 + (223799/2359296)*n^8 + (101131/147456)*n^7 + (2115031/589824)*n^6 + (2014145/147456)*n^5 + (88753375/2359296)*n^4 + (7180625/98304)*n^3 + (12440625/131072)*n^2 + (2428125/32768)*n + (6890625/262144)

A250438 Number of (n+1)X(3+1) 0..2 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

1296, 14400, 160000, 1000000, 6250000, 27562500, 121550625, 423536400, 1475789056, 4337012736, 12745506816, 32920473600, 85030560000, 198470250000, 463250390625, 996503062500, 2143588810000, 4311270849600, 8670998958336
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 3 of A250443

Examples

			Some solutions for n=3
..0..1..0..1....0..0..1..1....0..0..0..2....0..0..1..0....0..0..0..1
..1..2..2..2....0..0..0..0....1..2..2..2....1..0..2..1....0..1..2..2
..0..1..0..1....0..1..2..2....2..2..2..2....0..2..2..2....1..0..2..2
..2..2..2..2....0..0..1..1....2..2..2..2....1..1..2..1....0..1..2..2
		

Formula

Empirical: a(n) = 2*a(n-1) +14*a(n-2) -30*a(n-3) -90*a(n-4) +210*a(n-5) +350*a(n-6) -910*a(n-7) -910*a(n-8) +2730*a(n-9) +1638*a(n-10) -6006*a(n-11) -2002*a(n-12) +10010*a(n-13) +1430*a(n-14) -12870*a(n-15) +12870*a(n-17) -1430*a(n-18) -10010*a(n-19) +2002*a(n-20) +6006*a(n-21) -1638*a(n-22) -2730*a(n-23) +910*a(n-24) +910*a(n-25) -350*a(n-26) -210*a(n-27) +90*a(n-28) +30*a(n-29) -14*a(n-30) -2*a(n-31) +a(n-32)
Empirical for n mod 2 = 0: a(n) = (1/1358954496)*n^16 + (5/84934656)*n^15 + (31/14155776)*n^14 + (2135/42467328)*n^13 + (33847/42467328)*n^12 + (32735/3538944)*n^11 + (431429/5308416)*n^10 + (1463225/2654208)*n^9 + (5160755/1769472)*n^8 + (8008825/663552)*n^7 + (12913699/331776)*n^6 + (6965/72)*n^5 + (139417/768)*n^4 + (23855/96)*n^3 + (3741/16)*n^2 + 135*n + 36
Empirical for n mod 2 = 1: a(n) = (1/1358954496)*n^16 + (5/84934656)*n^15 + (373/169869312)*n^14 + (1435/28311552)*n^13 + (275299/339738624)*n^12 + (807985/84934656)*n^11 + (14409143/169869312)*n^10 + (49767325/84934656)*n^9 + (2153003003/679477248)*n^8 + (380990005/28311552)*n^7 + (7598369275/169869312)*n^6 + (9778683875/84934656)*n^5 + (76415846875/339738624)*n^4 + (9127365625/28311552)*n^3 + (2011296875/6291456)*n^2 + (616328125/3145728)*n + (937890625/16777216)

A250439 Number of (n+1)X(4+1) 0..2 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

3600, 60000, 1000000, 8750000, 76562500, 450187500, 2647102500, 11859019200, 53128406016, 195165573120, 716934758400, 2263282560000, 7144929000000, 20012416875000, 56053297265625, 142499937937500, 362266508890000
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 4 of A250443

Examples

			Some solutions for n=2
..1..1..1..2..1....0..1..1..2..1....0..1..0..1..1....0..0..1..2..1
..0..1..1..1..1....0..0..2..2..2....1..0..1..1..2....0..0..0..1..1
..1..2..1..2..1....2..1..2..2..2....1..1..1..1..1....1..2..1..2..2
		

Formula

Empirical: a(n) = 2*a(n-1) +18*a(n-2) -38*a(n-3) -152*a(n-4) +342*a(n-5) +798*a(n-6) -1938*a(n-7) -2907*a(n-8) +7752*a(n-9) +7752*a(n-10) -23256*a(n-11) -15504*a(n-12) +54264*a(n-13) +23256*a(n-14) -100776*a(n-15) -25194*a(n-16) +151164*a(n-17) +16796*a(n-18) -184756*a(n-19) +184756*a(n-21) -16796*a(n-22) -151164*a(n-23) +25194*a(n-24) +100776*a(n-25) -23256*a(n-26) -54264*a(n-27) +15504*a(n-28) +23256*a(n-29) -7752*a(n-30) -7752*a(n-31) +2907*a(n-32) +1938*a(n-33) -798*a(n-34) -342*a(n-35) +152*a(n-36) +38*a(n-37) -18*a(n-38) -2*a(n-39) +a(n-40)
Empirical for n mod 2 = 0: a(n) = (1/3131031158784)*n^20 + (7/195689447424)*n^19 + (493/260919263232)*n^18 + (2041/32614907904)*n^17 + (5281/3623878656)*n^16 + (34463/1358954496)*n^15 + (8369123/24461180928)*n^14 + (175039/47775744)*n^13 + (14323615/452984832)*n^12 + (28292321/127401984)*n^11 + (433413979/339738624)*n^10 + (254953261/42467328)*n^9 + (4413740701/191102976)*n^8 + (862554061/11943936)*n^7 + (723265463/3981312)*n^6 + (20008087/55296)*n^5 + (15399517/27648)*n^4 + (183817/288)*n^3 + (4095/8)*n^2 + 256*n + 60
Empirical for n mod 2 = 1: a(n) = (1/3131031158784)*n^20 + (7/195689447424)*n^19 + (2963/1565515579392)*n^18 + (4103/65229815808)*n^17 + (170759/115964116992)*n^16 + (420893/16307453952)*n^15 + (137540489/391378894848)*n^14 + (186200281/48922361856)*n^13 + (52127114249/1565515579392)*n^12 + (2583189377/10871635968)*n^11 + (120935995553/86973087744)*n^10 + (218008401281/32614907904)*n^9 + (41245572338777/1565515579392)*n^8 + (4142442582715/48922361856)*n^7 + (85987767005225/391378894848)*n^6 + (7389222103375/16307453952)*n^5 + (84109893284375/115964116992)*n^4 + (6293620178125/7247757312)*n^3 + (14136300171875/19327352832)*n^2 + (103730703125/268435456)*n + (413609765625/4294967296)

A250441 Number of (n+1)X(6+1) 0..2 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

22500, 787500, 27562500, 450187500, 7353062500, 74118870000, 747118209600, 5379251109120, 38730607985664, 217365657062400, 1219909299840000, 5648304538800000, 26152226372250000, 103882454756437500
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 6 of A250443

Examples

			Some solutions for n=1
..0..0..0..0..1..1..2....2..0..2..0..2..2..2....0..0..0..1..0..1..2
..0..0..0..1..1..2..1....0..1..1..2..2..2..2....0..2..2..2..2..2..2
		

Formula

Empirical: a(n) = 2*a(n-1) +26*a(n-2) -54*a(n-3) -324*a(n-4) +702*a(n-5) +2574*a(n-6) -5850*a(n-7) -14625*a(n-8) +35100*a(n-9) +63180*a(n-10) -161460*a(n-11) -215280*a(n-12) +592020*a(n-13) +592020*a(n-14) -1776060*a(n-15) -1332045*a(n-16) +4440150*a(n-17) +2466750*a(n-18) -9373650*a(n-19) -3749460*a(n-20) +16872570*a(n-21) +4601610*a(n-22) -26075790*a(n-23) -4345965*a(n-24) +34767720*a(n-25) +2674440*a(n-26) -40116600*a(n-27) +40116600*a(n-29) -2674440*a(n-30) -34767720*a(n-31) +4345965*a(n-32) +26075790*a(n-33) -4601610*a(n-34) -16872570*a(n-35) +3749460*a(n-36) +9373650*a(n-37) -2466750*a(n-38) -4440150*a(n-39) +1332045*a(n-40) +1776060*a(n-41) -592020*a(n-42) -592020*a(n-43) +215280*a(n-44) +161460*a(n-45) -63180*a(n-46) -35100*a(n-47) +14625*a(n-48) +5850*a(n-49) -2574*a(n-50) -702*a(n-51) +324*a(n-52) +54*a(n-53) -26*a(n-54) -2*a(n-55) +a(n-56)
Empirical for n mod 2 = 0: a(n) = (1/46168933054965350400)*n^28 + (23/5771116631870668800)*n^27 + (451/1282470362637926400)*n^26 + (19057/961852771978444800)*n^25 + (770023/961852771978444800)*n^24 + (1485127/60115798248652800)*n^23 + (48523211/80154397664870400)*n^22 + (26923657/2226511046246400)*n^21 + (12056968741/60115798248652800)*n^20 + (4207062883/1502894956216320)*n^19 + (498997793059/15028949562163200)*n^18 + (1266437177191/3757237390540800)*n^17 + (11060075878277/3757237390540800)*n^16 + (2605379422429/117413668454400)*n^15 + (5434788716347/37572373905408)*n^14 + (191574384904933/234827336908800)*n^13 + (233506669475617/58706834227200)*n^12 + (245496100146481/14676708556800)*n^11 + (665395240637933/11007531417600)*n^10 + (102760865752237/550376570880)*n^9 + (112182743639143/229323571200)*n^8 + (20566195851937/19110297600)*n^7 + (1561209722213/796262400)*n^6 + (19261940849/6635520)*n^5 + (4701106061/1382400)*n^4 + (34907687/11520)*n^3 + (185039/96)*n^2 + (3115/4)*n + 150
Empirical for n mod 2 = 1: a(n) = (1/46168933054965350400)*n^28 + (23/5771116631870668800)*n^27 + (325/923378661099307008)*n^26 + (114641/5771116631870668800)*n^25 + (37156691/46168933054965350400)*n^24 + (71922841/2885558315935334400)*n^23 + (7082252513/11542233263741337600)*n^22 + (35566445347/2885558315935334400)*n^21 + (9501813256121/46168933054965350400)*n^20 + (16707362824109/5771116631870668800)*n^19 + (159961807233959/4616893305496535040)*n^18 + (82028427321371/230844665274826752)*n^17 + (144932272992586787/46168933054965350400)*n^16 + (34583558049937571/1442779157967667200)*n^15 + (914775351038608423/5771116631870668800)*n^14 + (1310460363060759641/1442779157967667200)*n^13 + (208068829025881411739/46168933054965350400)*n^12 + (111506687915337527297/5771116631870668800)*n^11 + (1646408524090171699187/23084466527482675200)*n^10 + (433736506410530367917/1923705543956889600)*n^9 + (345394097513574221281/569986827839078400)*n^8 + (29299006250741638439/21374506043965440)*n^7 + (14674937650257198937/5699868278390784)*n^6 + (207995809091667065/52776558133248)*n^5 + (1347860673706015875/281474976710656)*n^4 + (156248550749725875/35184372088832)*n^3 + (415361160772543125/140737488355328)*n^2 + (44019729622378125/35184372088832)*n + (71508843479390625/281474976710656)

A250442 Number of (n+1)X(7+1) 0..2 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

50625, 2480625, 121550625, 2647102500, 57648010000, 747118209600, 9682651996416, 87143867967744, 784294811709696, 5379800012294400, 36902256320160000, 205033454758440000, 1139190980775210000
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 7 of A250443

Examples

			Some solutions for n=1
..0..2..1..2..2..2..2..2....0..0..1..0..2..0..2..0....0..2..1..2..2..2..2..2
..1..0..1..0..1..0..1..2....2..0..2..1..2..1..2..2....0..0..0..0..0..1..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +30*a(n-2) -62*a(n-3) -434*a(n-4) +930*a(n-5) +4030*a(n-6) -8990*a(n-7) -26970*a(n-8) +62930*a(n-9) +138446*a(n-10) -339822*a(n-11) -566370*a(n-12) +1472562*a(n-13) +1893294*a(n-14) -5259150*a(n-15) -5259150*a(n-16) +15777450*a(n-17) +12271350*a(n-18) -40320150*a(n-19) -24192090*a(n-20) +88704330*a(n-21) +40320150*a(n-22) -169344630*a(n-23) -56448210*a(n-24) +282241050*a(n-25) +65132550*a(n-26) -412506150*a(n-27) -58929450*a(n-28) +530365050*a(n-29) +35357670*a(n-30) -601080390*a(n-31) +601080390*a(n-33) -35357670*a(n-34) -530365050*a(n-35) +58929450*a(n-36) +412506150*a(n-37) -65132550*a(n-38) -282241050*a(n-39) +56448210*a(n-40) +169344630*a(n-41) -40320150*a(n-42) -88704330*a(n-43) +24192090*a(n-44) +40320150*a(n-45) -12271350*a(n-46) -15777450*a(n-47) +5259150*a(n-48) +5259150*a(n-49) -1893294*a(n-50) -1472562*a(n-51) +566370*a(n-52) +339822*a(n-53) -138446*a(n-54) -62930*a(n-55) +26970*a(n-56) +8990*a(n-57) -4030*a(n-58) -930*a(n-59) +434*a(n-60) +62*a(n-61) -30*a(n-62) -2*a(n-63) +a(n-64)
Empirical for n mod 2 = 0: a(n) = (1/295481171551778242560000)*n^32 + (7/9233786610993070080000)*n^31 + (7/85498024175861760000)*n^30 + (5243/923378661099307008000)*n^29 + (262369/923378661099307008000)*n^28 + (1401743/128247036263792640000)*n^27 + (3233819/9618527719784448000)*n^26 + (816965149/96185277197844480000)*n^25 + (1279779727/7124835347988480000)*n^24 + (77545763309/24046319299461120000)*n^23 + (298628314543/6011579824865280000)*n^22 + (442084983011/667953313873920000)*n^21 + (46132907907427/6011579824865280000)*n^20 + (116909942540279/1502894956216320000)*n^19 + (802092891287/1159641169920000)*n^18 + (2031366183004879/375723739054080000)*n^17 + (55903810241301923/1502894956216320000)*n^16 + (261298569894229/1159641169920000)*n^15 + (84611785049939939/70448201072640000)*n^14 + (99060914744459353/17612050268160000)*n^13 + (7528886885201117/326149079040000)*n^12 + (91063559073748373/1100753141760000)*n^11 + (70894521213893131/275188285440000)*n^10 + (5294479580641027/7644119040000)*n^9 + (12186324387089641/7644119040000)*n^8 + (24741813694283/7962624000)*n^7 + (16771060400671/3317760000)*n^6 + (93056990999/13824000)*n^5 + (658151479/92160)*n^4 + (1113469/192)*n^3 + (54115/16)*n^2 + 1260*n + 225
Empirical for n mod 2 = 1: a(n) = (1/295481171551778242560000)*n^32 + (7/9233786610993070080000)*n^31 + (1513/18467573221986140160000)*n^30 + (10507/1846757322198614016000)*n^29 + (10537219/36935146443972280320000)*n^28 + (101613407/9233786610993070080000)*n^27 + (1254630283/3693514644397228032000)*n^26 + (79578454319/9233786610993070080000)*n^25 + (13531572555887/73870292887944560640000)*n^24 + (30546647311187/9233786610993070080000)*n^23 + (37898002769801/738702928879445606400)*n^22 + (6360093759255299/9233786610993070080000)*n^21 + (297518478101705581/36935146443972280320000)*n^20 + (761220098616092507/9233786610993070080000)*n^19 + (2736237844091525131/3693514644397228032000)*n^18 + (54099304221246858539/9233786610993070080000)*n^17 + (6032326528400394272179/147740585775889121280000)*n^16 + (2316199055347180883957/9233786610993070080000)*n^15 + (5014841998373251341143/3693514644397228032000)*n^14 + (59703913143687617298949/9233786610993070080000)*n^13 + (998160378663138824821829/36935146443972280320000)*n^12 + (60812335346478039487891/615585774066204672000)*n^11 + (71663362568569460507117/227994731135631360000)*n^10 + (295828034292591834286967/341992096703447040000)*n^9 + (1862331872171523328148239/911978924542525440000)*n^8 + (10363813651198361679941/2533274790395904000)*n^7 + (772024515761134222363/112589990684262400)*n^6 + (106193495738755717173/11258999068426240)*n^5 + (93356331606752896395/9007199254740992)*n^4 + (19692809375944600665/2251799813685248)*n^3 + (23948041990752512325/4503599627370496)*n^2 + (4668342475512263625/2251799813685248)*n + (28034326997660300625/72057594037927936)

A250436 Number of (n+1)X(n+1) 0..2 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

81, 2160, 160000, 8750000, 937890625, 74118870000, 9682651996416, 958582547645184, 141763707879526656, 16346105372357849088, 2632478657451209588736, 338880211548064890612480
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Diagonal of A250443

Examples

			Some solutions for n=3
..0..1..1..1....0..1..1..1....0..0..0..1....0..0..1..0....0..0..1..2
..0..0..0..0....0..0..0..0....0..0..0..1....0..2..0..2....0..0..1..0
..0..1..2..2....0..1..1..1....0..2..0..2....2..0..2..1....0..2..1..2
..0..0..2..0....1..0..2..0....0..1..2..1....1..2..1..2....1..0..2..2
		
Showing 1-7 of 7 results.