A250445 a(n) = gcd(n!, Fibonacci(n)) as n runs through A250444.
2, 3, 5, 2, 5, 13, 2, 37, 2, 13, 2, 3, 5, 5, 2, 73, 13, 5, 2, 3, 2, 5, 13, 89, 2, 3, 2, 2, 89, 5, 5, 157, 2, 13, 3, 2, 2, 89, 3, 193, 2, 13, 5, 3, 2, 5, 13, 2, 5, 3, 3, 2, 89, 5, 2, 3, 277, 13, 3, 5, 233, 13, 2, 5, 2, 313, 89, 2, 2, 13, 3, 2, 89, 5, 5, 13, 233, 2, 2, 397, 233, 3, 2, 3, 5
Offset: 1
Examples
For n = 9, GCD(9!, Fibonacci(9)) = 2, (prime, thus belongs to the sequence).
Programs
-
Mathematica
a[n_] := GCD[n!, Fibonacci[n]]; p[n_] := Which[PrimeQ[a[n]], a[n], PrimeQ[a[n]] == False, ]; Select[Table[p[n], {n, 1, 300}], IntegerQ[#] &]
-
PARI
for(n=1,10^3,if(isprime(p=gcd(n!,fibonacci(n))),print1(p,", "))) \\ Derek Orr, Nov 23 2014
Extensions
More terms from Derek Orr, Nov 23 2014
Comments