This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250486 #21 May 28 2019 08:10:57 %S A250486 1,0,1,0,1,1,0,1,1,1,0,1,3,2,1,0,1,21,34,3,1,0,1,987,196418,987,5,1,0, %T A250486 1,2178309,37889062373143906,10610209857723,75025,8,1 %N A250486 A(n,k) is the n^k-th Fibonacci number; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A250486 Alois P. Heinz, <a href="/A250486/b250486.txt">Antidiagonals n = 0..10, flattened</a> %H A250486 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_number">Fibonacci number</a> %F A250486 A(n,k) = [0, 1; 1, 1]^(n^k)[1,2]. %e A250486 Square array A(n,k) begins: %e A250486 1, 0, 0, 0, 0, 0, 0, 0, ... %e A250486 1, 1, 1, 1, 1, 1, 1, 1, ... %e A250486 1, 1, 3, 21, 987, 2178309, ... %e A250486 1, 2, 34, 196418, 37889062373143906, ... %e A250486 1, 3, 987, 10610209857723, ... %e A250486 1, 5, 75025, 59425114757512643212875125, ... %e A250486 1, 8, 14930352, ... %e A250486 1, 13, 7778742049, ... %p A250486 A:= (n, k)-> (<<0|1>, <1|1>>^(n^k))[1, 2]: %p A250486 seq(seq(A(n, d-n), n=0..d), d=0..8); %t A250486 A[n_, k_] := MatrixPower[{{0, 1}, {1, 1}}, n^k][[1, 2]]; A[0, 0] = 1; %t A250486 Table[A[n, d-n], {d, 0, 8}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, May 28 2019, from Maple *) %Y A250486 Columns k=0-8 give: A000012, A000045, A054783, A182149, A250490, A250491, A250492, A250493, A250494. %Y A250486 Rows n=0-10 give: A000007, A000012, A058635, A045529, A145231, A145232, A145233, A145234, A250487, A250488, A250489. %Y A250486 Main diagonal gives A250495. %Y A250486 Cf. A000045. %K A250486 nonn,tabl %O A250486 0,13 %A A250486 _Alois P. Heinz_, Nov 24 2014