cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250488 a(n) = Fibonacci(9^n).

This page as a plain text file.
%I A250488 #12 Nov 27 2022 06:39:57
%S A250488 1,34,37889062373143906
%N A250488 a(n) = Fibonacci(9^n).
%H A250488 Alois P. Heinz, <a href="/A250488/b250488.txt">Table of n, a(n) for n = 0..3</a>
%F A250488 a(n) = A000045(9^n).
%F A250488 From _Peter Bala_, Nov 25 2022: (Start)
%F A250488 a(n+1) = 625*a(n)^9 - 1125*a(n)^7 + 675*a(n)^5 - 150*a(n)^3 + 9*a(n) with a(0) = 1.
%F A250488 a(n) == 7 (mod 9) for n >= 1.
%F A250488 a(n+1) == a(n) mod (9^n).
%F A250488 5*a(n)^2 == 2 (mod 9^n).
%F A250488 In the ring of 9-adic integers, the sequence {a(n)} is a Cauchy sequence. It converges to a 9-adic root of the quadratic equation 5*x^2 - 2 = 0 (the 9-adic Cauchy sequence {Fibonacci(3*9^n)} converges to the other root). (End)
%p A250488 a:= n-> (<<0|1>, <1|1>>^(9^n))[1, 2]:
%p A250488 seq(a(n), n=0..4);
%Y A250488 Row n = 9 of A250486. Bisection of A045529.
%Y A250488 Cf. A000045.
%K A250488 nonn,easy
%O A250488 0,2
%A A250488 _Alois P. Heinz_, Nov 24 2014