This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250488 #12 Nov 27 2022 06:39:57 %S A250488 1,34,37889062373143906 %N A250488 a(n) = Fibonacci(9^n). %H A250488 Alois P. Heinz, <a href="/A250488/b250488.txt">Table of n, a(n) for n = 0..3</a> %F A250488 a(n) = A000045(9^n). %F A250488 From _Peter Bala_, Nov 25 2022: (Start) %F A250488 a(n+1) = 625*a(n)^9 - 1125*a(n)^7 + 675*a(n)^5 - 150*a(n)^3 + 9*a(n) with a(0) = 1. %F A250488 a(n) == 7 (mod 9) for n >= 1. %F A250488 a(n+1) == a(n) mod (9^n). %F A250488 5*a(n)^2 == 2 (mod 9^n). %F A250488 In the ring of 9-adic integers, the sequence {a(n)} is a Cauchy sequence. It converges to a 9-adic root of the quadratic equation 5*x^2 - 2 = 0 (the 9-adic Cauchy sequence {Fibonacci(3*9^n)} converges to the other root). (End) %p A250488 a:= n-> (<<0|1>, <1|1>>^(9^n))[1, 2]: %p A250488 seq(a(n), n=0..4); %Y A250488 Row n = 9 of A250486. Bisection of A045529. %Y A250488 Cf. A000045. %K A250488 nonn,easy %O A250488 0,2 %A A250488 _Alois P. Heinz_, Nov 24 2014