cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250527 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

50, 222, 222, 867, 1180, 867, 3123, 5029, 5029, 3123, 10660, 18859, 21955, 18859, 10660, 35064, 65310, 82023, 82023, 65310, 35064, 112373, 214812, 279161, 300131, 279161, 214812, 112373, 353517, 682921, 896191, 993123, 993123, 896191, 682921
Offset: 1

Views

Author

R. H. Hardin, Nov 24 2014

Keywords

Comments

Table starts
......50......222......867......3123.....10660......35064.....112373.....353517
.....222.....1180.....5029.....18859.....65310.....214812.....682921....2122743
.....867.....5029....21955.....82023....279161.....896191....2771901....8374485
....3123....18859....82023....300131....993123....3088923....9240559...26984403
...10660....65310...279161....993123...3183434....9580060...27710543...78195145
...35064...214812...896191...3088923...9580060...27910024...78204775..213775147
..112373...682921..2771901...9240559..27710543...78204775..212707851..565044857
..353517..2122743..8374485..26984403..78195145..213775147..565044857.1462376991
.1097430..6501118.24944039..77707851.217483704..575554760.1478308633.3731976469
.3374226.19720580.73714737.222271083.600720730.1537251580.3832617341.9435234815

Examples

			Some solutions for n=3 k=4
..2..2..1..1..0....2..2..1..1..0....2..1..0..0..1....2..2..1..0..0
..2..2..1..1..0....1..1..0..1..0....1..0..0..0..1....1..1..1..0..0
..1..1..1..1..1....0..2..1..2..1....2..1..1..1..2....1..1..2..1..1
..1..2..2..2..2....0..2..1..2..2....1..0..0..0..1....1..1..2..1..1
		

Crossrefs

Column 1 is A222993(n+1)

Formula

Empirical for column k (k=2 recurrence also works for k=1):
k=1: a(n) = 9*a(n-1) -31*a(n-2) +51*a(n-3) -40*a(n-4) +12*a(n-5)
k=2-7: a(n) = 14*a(n-1) -85*a(n-2) +294*a(n-3) -639*a(n-4) +906*a(n-5) -839*a(n-6) +490*a(n-7) -164*a(n-8) +24*a(n-9)