This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250551 #14 Nov 06 2017 04:58:36 %S A250551 1,11,307,8117,139393,982381,4935773,287319059,1056494083,39179109811, %T A250551 1609331378051,4835480422963,33892787092141,1798339013862173, %U A250551 34201770221163407,4176177999344899729,4179324192635626369,32062945622467289429,2341997846273161559117 %N A250551 Denominator of the harmonic mean of the first n positive 10-gonal numbers. %C A250551 a(n+1) is, for n >= 0, also the numerator of the partial sums of the reciprocal of the positive decagonal numbers A001107(n+1) with the denominators A294515(n) (provided A294515(n) = A250550(n+1)/(n+1)). - _Wolfdieter Lang_, Nov 02 2017 %H A250551 Colin Barker, <a href="/A250551/b250551.txt">Table of n, a(n) for n = 1..850</a> %F A250551 a(n) = denominator(r(n)) with the rationals r(n) = n/Sum_{k=1..n} A001107(n), n >= 1. See the name. - _Wolfdieter Lang_, Nov 02 2017 %e A250551 a(3) = 307 because the first 3 positive decagonal numbers A001107 are [1,10,27], and 3/(1/1+1/10+1/27) = 810/307. %t A250551 With[{s = Array[PolygonalNumber[10, #] &, 19]}, Denominator@ Array[HarmonicMean@ Take[s, #] &, Length@ s]] (* _Michael De Vlieger_, Nov 02 2017 *) %o A250551 (PARI) %o A250551 harmonicmean(v) = #v / sum(k=1, #v, 1/v[k]) %o A250551 s=vector(30); for(n=1, #s, s[n]=denominator(harmonicmean(vector(n, k, (8*k^2-6*k)/2)))); s %Y A250551 Cf. A001107 (10-gonal numbers), A250550 (numerators). %K A250551 nonn,frac,easy %O A250551 1,2 %A A250551 _Colin Barker_, Nov 25 2014