This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A250574 #6 Jul 23 2025 12:33:24 %S A250574 512,3375,3375,21952,39852,21952,140608,463006,463006,140608,884736, %T A250574 5281190,9583440,5281190,884736,5545233,59025322,194160522,194160522, %U A250574 59025322,5545233,34645976,656805747,3844025984,6967413024,3844025984 %N A250574 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with nondecreasing maximum of every three consecutive values in every row and column. %C A250574 Table starts %C A250574 .......512........3375..........21952............140608..............884736 %C A250574 ......3375.......39852.........463006...........5281190............59025322 %C A250574 .....21952......463006........9583440.........194160522..........3844025984 %C A250574 ....140608.....5281190......194160522........6967413024........243722971680 %C A250574 ....884736....59025322.....3844025984......243722971680......15037777879872 %C A250574 ...5545233...656805747....75733658665.....8480014708481.....922491768788283 %C A250574 ..34645976..7283102949..1486288137310...293803461491618...56336934011827612 %C A250574 .216000000.80572967431.29093999130722.10151010566609616.3430565103477146672 %H A250574 R. H. Hardin, <a href="/A250574/b250574.txt">Table of n, a(n) for n = 1..126</a> %F A250574 Empirical for column k: %F A250574 k=1: [linear recurrence of order 19] %F A250574 k=2: [order 49] %e A250574 Some solutions for n=2 k=4 %e A250574 ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0 %e A250574 ..1..0..1..0..1..0....0..1..1..0..1..0....1..0..0..1..1..1....0..0..0..1..1..0 %e A250574 ..1..0..1..1..1..0....0..0..0..1..0..0....0..0..1..0..0..1....0..0..0..0..0..0 %e A250574 ..0..1..1..0..0..1....1..1..1..0..0..1....1..0..0..1..0..1....1..1..0..1..0..0 %Y A250574 Column 1 is A189155(n+2) %K A250574 nonn,tabl %O A250574 1,1 %A A250574 _R. H. Hardin_, Nov 25 2014