cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A250640 Number of length n+1 0..2 arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

1, 17, 23, 125, 280, 1061, 2870, 9495, 27507, 86149, 255704, 782393, 2341381, 7090347, 21271463, 64109181, 192439733, 578665211, 1736971814, 5217197093, 15658051930, 47004010481, 141050402559, 423295193635, 1270100996174
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Examples

			Some solutions for n=6:
..1....2....1....2....0....0....1....1....2....1....2....0....0....2....2....0
..0....1....2....2....2....1....1....0....1....2....2....0....1....2....1....1
..1....1....1....1....1....1....0....1....0....0....1....1....2....1....0....0
..0....0....2....0....2....2....1....2....1....2....1....0....0....0....2....1
..1....1....1....2....0....2....0....0....0....0....0....2....1....1....0....0
..1....0....2....1....1....2....2....2....0....1....0....2....2....1....0....2
..0....2....1....0....0....1....0....1....1....0....0....0....2....0....1....0
		

Crossrefs

Column 2 of A250646.

Formula

Empirical: a(n) = 6*a(n-1) - 3*a(n-2) - 42*a(n-3) + 71*a(n-4) + 56*a(n-5) - 192*a(n-6) + 80*a(n-7) + 77*a(n-8) - 64*a(n-9) + 12*a(n-10).
Empirical g.f.: x*(1 + 11*x - 76*x^2 + 80*x^3 + 242*x^4 - 541*x^5 + 201*x^6 + 239*x^7 - 192*x^8 + 36*x^9) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 3*x^2 + x^3)*(1 - 2*x - x^2 + x^3)). - Colin Barker, Nov 15 2018

A250641 Number of length n+1 0..3 arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

1, 36, 44, 476, 1424, 7696, 28238, 126482, 491943, 2059700, 8161068, 33268124, 132637221, 534771362, 2136620867, 8574987528, 34285733053, 137334914170, 549255340746, 2198311980408, 8792729559738, 35179581032056, 140715004320059
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 3 of A250646

Examples

			Some solutions for n=6
..0....0....3....2....0....1....2....2....3....0....1....3....3....0....1....0
..2....3....2....3....0....0....3....2....1....3....2....2....1....3....1....1
..1....2....1....2....3....1....1....3....3....1....1....3....1....3....1....2
..2....2....1....0....0....1....0....2....3....3....1....0....1....1....3....0
..0....2....2....2....2....1....2....1....2....1....0....1....2....2....1....2
..2....0....3....2....2....3....1....3....1....3....1....1....1....0....0....1
..2....0....1....1....0....1....1....2....2....1....0....3....0....3....3....1
		

Formula

Empirical: a(n) = 11*a(n-1) -22*a(n-2) -172*a(n-3) +787*a(n-4) +353*a(n-5) -7413*a(n-6) +8289*a(n-7) +29140*a(n-8) -67796*a(n-9) -32276*a(n-10) +217716*a(n-11) -108368*a(n-12) -314968*a(n-13) +384528*a(n-14) +123824*a(n-15) -451104*a(n-16) +169760*a(n-17) +185424*a(n-18) -183216*a(n-19) +24640*a(n-20) +40064*a(n-21) -24448*a(n-22) +5760*a(n-23) -512*a(n-24) for n>25

A250642 Number of length n+1 0..4 arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

1, 65, 89, 1293, 4853, 34441, 163043, 915663, 4537317, 23671551, 118358549, 601565301, 3011330309, 15155615651, 75845220727, 380253505733, 1902264449049, 9522274036139, 47624961772074, 238244610944161, 1191402062810086
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 4 of A250646

Examples

			Some solutions for n=6
..0....3....1....2....2....0....3....1....4....4....2....1....3....0....3....4
..1....2....2....0....3....2....0....1....1....3....0....2....3....1....0....4
..1....4....2....0....3....2....2....3....0....1....3....2....1....1....2....2
..4....2....1....1....0....1....4....0....0....2....2....3....3....0....0....4
..0....3....2....3....1....4....3....1....2....4....1....4....1....1....2....4
..3....3....4....0....1....1....2....2....3....1....3....3....4....3....1....2
..1....2....0....1....3....2....1....1....4....0....0....3....2....1....0....4
		

A250643 Number of length n+1 0..5 arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

1, 106, 134, 2954, 12473, 120114, 677505, 4749950, 28200435, 177863786, 1063874048, 6491819162, 38892883673, 234724691398, 1407192408230, 8460554956974, 50741165814612, 304671802762820, 1827631230875303
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 5 of A250646

Examples

			Some solutions for n=6
..2....1....1....2....4....3....3....4....2....5....0....1....0....1....2....3
..3....2....3....4....4....3....1....2....3....3....4....0....1....4....1....0
..5....5....3....2....0....2....1....5....5....1....3....4....3....4....2....1
..4....2....5....5....5....2....2....0....5....4....4....0....3....3....2....2
..4....4....5....0....2....3....5....2....0....1....4....0....0....5....1....4
..0....4....1....2....2....0....4....4....4....3....4....4....1....4....5....2
..5....4....5....2....2....4....2....1....2....0....1....5....1....4....0....2
		

A250644 Number of length n+1 0..6 arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

1, 161, 219, 5901, 28379, 332827, 2225195, 18399217, 129137886, 953809557, 6704767056, 47777146765, 335147823244, 2360792885729, 16540740396740, 116054610957529, 812699929957712, 5694036707961181, 39865043590813086
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 6 of A250646.

Examples

			Some solutions for n=5
..6....4....1....2....3....4....4....2....3....0....4....3....6....4....6....3
..4....1....0....0....1....6....0....1....6....2....5....1....0....3....4....1
..4....1....3....0....4....1....1....5....2....0....3....1....3....0....2....0
..0....0....4....5....3....5....3....0....0....0....6....3....5....3....0....0
..4....2....6....2....2....2....5....4....0....2....0....2....3....0....6....0
..6....6....1....1....1....2....5....0....2....1....2....2....1....5....5....4
		

Crossrefs

Cf. A250646.

A250647 Number of length 3+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

6, 23, 44, 89, 134, 219, 296, 433, 550, 751, 916, 1193, 1414, 1779, 2064, 2529, 2886, 3463, 3900, 4601, 5126, 5963, 6584, 7569, 8294, 9439, 10276, 11593, 12550, 14051, 15136, 16833, 18054, 19959, 21324, 23449, 24966, 27323, 29000, 31601, 33446, 36303
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Examples

			Some solutions for n=6:
..0....5....1....6....1....0....0....0....2....3....4....6....1....2....4....0
..0....0....2....2....0....0....3....0....2....0....0....5....5....0....2....0
..5....0....0....3....3....2....0....3....2....3....2....1....0....1....2....5
..1....5....0....1....4....1....6....1....4....6....2....1....0....1....0....2
		

Crossrefs

Row 3 of A250646.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
Empirical for n mod 2 = 0: a(n) = (5/12)*n^3 + 3*n^2 + (10/3)*n + 1.
Empirical for n mod 2 = 1: a(n) = (5/12)*n^3 + (11/4)*n^2 + (31/12)*n + (1/4).
Empirical g.f.: x*(6 + 17*x + 3*x^2 - 6*x^3 + x^5 - x^6) / ((1 - x)^4*(1 + x)^3). - Colin Barker, Nov 15 2018

A250648 Number of length 4+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

20, 125, 476, 1293, 2954, 5901, 10766, 18305, 29478, 45361, 67364, 96961, 135976, 186445, 250688, 331213, 431054, 553277, 701474, 879553, 1091754, 1342593, 1637320, 1981153, 2380028, 2840317, 3368740, 3972397, 4659346, 5437517, 6315766
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 4 of A250646.

Examples

			Some solutions for n=6
..0....0....3....2....1....2....3....0....0....1....1....1....5....0....1....4
..2....5....6....2....4....6....2....6....4....6....3....3....6....6....6....0
..5....1....6....0....1....5....4....1....3....0....0....3....5....4....5....2
..2....2....6....5....6....5....3....6....4....5....6....4....5....6....5....1
..2....1....5....1....5....1....3....4....1....2....2....1....0....4....3....4
		

Crossrefs

Cf. A250646.

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +a(n-3) -4*a(n-4) -5*a(n-5) +3*a(n-6) +6*a(n-7) +3*a(n-8) -5*a(n-9) -4*a(n-10) +a(n-11) +2*a(n-12) +a(n-13) -a(n-14).
Empirical for n mod 6 = 0: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (124/45)*n + 1.
Empirical for n mod 6 = 1: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (151/27)*n^2 + (1361/405)*n + (301/162).
Empirical for n mod 6 = 2: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (1036/405)*n + (49/81).
Empirical for n mod 6 = 3: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (169/45)*n + (5/2).
Empirical for n mod 6 = 4: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (151/27)*n^2 + (956/405)*n + (29/81).
Empirical for n mod 6 = 5: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (1441/405)*n + (341/162).

A250649 Number of length 5+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

28, 280, 1424, 4853, 12473, 28379, 56088, 103712, 175998, 289559, 445513, 675267, 974698, 1392138, 1913166, 2619191, 3465655, 4583225, 5895042, 7580998, 9518912, 11977473, 14741143, 18198445, 22042896, 26774380, 31970892, 38321697, 45196741
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 5 of A250646

Examples

			Some solutions for n=6
..2....0....2....6....0....5....5....3....1....2....4....2....1....1....6....3
..6....0....2....0....0....4....4....1....2....3....5....1....2....0....3....0
..1....5....5....1....5....2....1....5....4....2....4....3....3....0....4....2
..3....6....4....1....1....6....3....6....6....4....3....2....0....1....2....4
..1....0....1....3....2....3....0....0....6....5....1....1....0....4....0....3
..6....5....2....5....2....1....5....4....0....3....0....4....4....0....4....2
		

Formula

Empirical: a(n) = -3*a(n-1) -4*a(n-2) +11*a(n-4) +21*a(n-5) +18*a(n-6) -6*a(n-7) -39*a(n-8) -53*a(n-9) -30*a(n-10) +22*a(n-11) +64*a(n-12) +64*a(n-13) +22*a(n-14) -30*a(n-15) -53*a(n-16) -39*a(n-17) -6*a(n-18) +18*a(n-19) +21*a(n-20) +11*a(n-21) -4*a(n-23) -3*a(n-24) -a(n-25)
Empirical for n mod 12 = 0: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (791/288)*n^2 + (467/60)*n + 1
Empirical for n mod 12 = 1: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (11065/2592)*n^2 + (61501/7680)*n - (13183/6912)
Empirical for n mod 12 = 2: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (9199/5184)*n^2 + (23569/4320)*n + (67/864)
Empirical for n mod 12 = 3: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (2155/576)*n^2 + (62941/7680)*n - (537/256)
Empirical for n mod 12 = 4: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (8527/2592)*n^2 + (467/60)*n + (41/27)
Empirical for n mod 12 = 5: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (7097/2592)*n^2 + (394789/69120)*n - (21631/6912)
Empirical for n mod 12 = 6: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (1591/576)*n^2 + (3721/480)*n + (25/32)
Empirical for n mod 12 = 7: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (22211/5184)*n^2 + (62941/7680)*n - (10915/6912)
Empirical for n mod 12 = 8: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (4559/2592)*n^2 + (2963/540)*n + (8/27)
Empirical for n mod 12 = 9: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (1073/288)*n^2 + (61501/7680)*n - (621/256)
Empirical for n mod 12 = 10: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (17135/5184)*n^2 + (3721/480)*n + (1123/864)
Empirical for n mod 12 = 11: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (14275/5184)*n^2 + (407749/69120)*n - (19363/6912)

A250650 Number of length 6+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

72, 1061, 7696, 34441, 120114, 332827, 812004, 1749359, 3497934, 6469165, 11395070, 19047473, 30746306, 47793245, 72401338, 106583429, 153809996, 217072541, 301491734, 411350415, 553983224, 735181841, 965180792, 1251735269
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 6 of A250646

Examples

			Some solutions for n=5
..2....1....2....5....5....2....1....0....5....5....1....2....3....4....5....1
..3....0....2....3....0....0....0....2....2....4....0....3....3....3....3....2
..4....3....0....1....4....2....3....5....5....3....2....5....1....1....3....5
..3....3....5....0....1....2....0....2....5....3....4....5....1....0....3....4
..4....2....0....3....0....4....1....3....5....4....5....2....0....5....2....0
..3....0....1....3....3....5....3....2....5....4....2....4....3....4....0....4
..1....2....1....0....1....5....1....0....3....3....5....4....0....3....4....1
		

A250651 Number of length 7+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

120, 2870, 28238, 163043, 677505, 2225195, 6290716, 15474251, 34620063, 71045837, 136895633, 249167782, 432945014, 721867127, 1163471851, 1819556318, 2767225673, 4114863787, 5983678292, 8546815362, 11983543443, 16566644515
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 7 of A250646

Examples

			Some solutions for n=4
..4....2....3....3....1....4....1....1....2....4....4....1....1....0....0....0
..0....2....2....1....0....1....0....1....0....0....1....1....2....1....2....0
..1....3....4....0....1....4....2....0....4....3....4....0....3....4....2....4
..1....4....4....4....4....0....0....3....2....3....0....2....0....1....1....1
..1....4....3....4....4....4....1....1....3....0....0....3....1....0....1....0
..0....0....3....1....2....0....1....3....0....4....0....1....0....0....0....1
..0....1....3....0....2....2....0....3....2....0....2....2....4....2....3....1
..0....2....3....1....1....0....4....4....1....3....1....4....2....2....2....1
		
Showing 1-10 of 11 results. Next