A250647 Number of length 3+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.
6, 23, 44, 89, 134, 219, 296, 433, 550, 751, 916, 1193, 1414, 1779, 2064, 2529, 2886, 3463, 3900, 4601, 5126, 5963, 6584, 7569, 8294, 9439, 10276, 11593, 12550, 14051, 15136, 16833, 18054, 19959, 21324, 23449, 24966, 27323, 29000, 31601, 33446, 36303
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....5....1....6....1....0....0....0....2....3....4....6....1....2....4....0 ..0....0....2....2....0....0....3....0....2....0....0....5....5....0....2....0 ..5....0....0....3....3....2....0....3....2....3....2....1....0....1....2....5 ..1....5....0....1....4....1....6....1....4....6....2....1....0....1....0....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A250646.
Formula
Empirical: a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
Empirical for n mod 2 = 0: a(n) = (5/12)*n^3 + 3*n^2 + (10/3)*n + 1.
Empirical for n mod 2 = 1: a(n) = (5/12)*n^3 + (11/4)*n^2 + (31/12)*n + (1/4).
Empirical g.f.: x*(6 + 17*x + 3*x^2 - 6*x^3 + x^5 - x^6) / ((1 - x)^4*(1 + x)^3). - Colin Barker, Nov 15 2018