cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250648 Number of length 4+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

20, 125, 476, 1293, 2954, 5901, 10766, 18305, 29478, 45361, 67364, 96961, 135976, 186445, 250688, 331213, 431054, 553277, 701474, 879553, 1091754, 1342593, 1637320, 1981153, 2380028, 2840317, 3368740, 3972397, 4659346, 5437517, 6315766
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 4 of A250646.

Examples

			Some solutions for n=6
..0....0....3....2....1....2....3....0....0....1....1....1....5....0....1....4
..2....5....6....2....4....6....2....6....4....6....3....3....6....6....6....0
..5....1....6....0....1....5....4....1....3....0....0....3....5....4....5....2
..2....2....6....5....6....5....3....6....4....5....6....4....5....6....5....1
..2....1....5....1....5....1....3....4....1....2....2....1....0....4....3....4
		

Crossrefs

Cf. A250646.

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +a(n-3) -4*a(n-4) -5*a(n-5) +3*a(n-6) +6*a(n-7) +3*a(n-8) -5*a(n-9) -4*a(n-10) +a(n-11) +2*a(n-12) +a(n-13) -a(n-14).
Empirical for n mod 6 = 0: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (124/45)*n + 1.
Empirical for n mod 6 = 1: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (151/27)*n^2 + (1361/405)*n + (301/162).
Empirical for n mod 6 = 2: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (1036/405)*n + (49/81).
Empirical for n mod 6 = 3: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (169/45)*n + (5/2).
Empirical for n mod 6 = 4: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (151/27)*n^2 + (956/405)*n + (29/81).
Empirical for n mod 6 = 5: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (1441/405)*n + (341/162).