A250648 Number of length 4+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.
20, 125, 476, 1293, 2954, 5901, 10766, 18305, 29478, 45361, 67364, 96961, 135976, 186445, 250688, 331213, 431054, 553277, 701474, 879553, 1091754, 1342593, 1637320, 1981153, 2380028, 2840317, 3368740, 3972397, 4659346, 5437517, 6315766
Offset: 1
Keywords
Examples
Some solutions for n=6 ..0....0....3....2....1....2....3....0....0....1....1....1....5....0....1....4 ..2....5....6....2....4....6....2....6....4....6....3....3....6....6....6....0 ..5....1....6....0....1....5....4....1....3....0....0....3....5....4....5....2 ..2....2....6....5....6....5....3....6....4....5....6....4....5....6....5....1 ..2....1....5....1....5....1....3....4....1....2....2....1....0....4....3....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A250646.
Formula
Empirical: a(n) = a(n-1) +2*a(n-2) +a(n-3) -4*a(n-4) -5*a(n-5) +3*a(n-6) +6*a(n-7) +3*a(n-8) -5*a(n-9) -4*a(n-10) +a(n-11) +2*a(n-12) +a(n-13) -a(n-14).
Empirical for n mod 6 = 0: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (124/45)*n + 1.
Empirical for n mod 6 = 1: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (151/27)*n^2 + (1361/405)*n + (301/162).
Empirical for n mod 6 = 2: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (1036/405)*n + (49/81).
Empirical for n mod 6 = 3: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (169/45)*n + (5/2).
Empirical for n mod 6 = 4: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (151/27)*n^2 + (956/405)*n + (29/81).
Empirical for n mod 6 = 5: a(n) = (2/15)*n^5 + (403/162)*n^4 + (532/81)*n^3 + (17/3)*n^2 + (1441/405)*n + (341/162).
Comments