A250649 Number of length 5+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.
28, 280, 1424, 4853, 12473, 28379, 56088, 103712, 175998, 289559, 445513, 675267, 974698, 1392138, 1913166, 2619191, 3465655, 4583225, 5895042, 7580998, 9518912, 11977473, 14741143, 18198445, 22042896, 26774380, 31970892, 38321697, 45196741
Offset: 1
Keywords
Examples
Some solutions for n=6 ..2....0....2....6....0....5....5....3....1....2....4....2....1....1....6....3 ..6....0....2....0....0....4....4....1....2....3....5....1....2....0....3....0 ..1....5....5....1....5....2....1....5....4....2....4....3....3....0....4....2 ..3....6....4....1....1....6....3....6....6....4....3....2....0....1....2....4 ..1....0....1....3....2....3....0....0....6....5....1....1....0....4....0....3 ..6....5....2....5....2....1....5....4....0....3....0....4....4....0....4....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..153
Formula
Empirical: a(n) = -3*a(n-1) -4*a(n-2) +11*a(n-4) +21*a(n-5) +18*a(n-6) -6*a(n-7) -39*a(n-8) -53*a(n-9) -30*a(n-10) +22*a(n-11) +64*a(n-12) +64*a(n-13) +22*a(n-14) -30*a(n-15) -53*a(n-16) -39*a(n-17) -6*a(n-18) +18*a(n-19) +21*a(n-20) +11*a(n-21) -4*a(n-23) -3*a(n-24) -a(n-25)
Empirical for n mod 12 = 0: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (791/288)*n^2 + (467/60)*n + 1
Empirical for n mod 12 = 1: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (11065/2592)*n^2 + (61501/7680)*n - (13183/6912)
Empirical for n mod 12 = 2: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (9199/5184)*n^2 + (23569/4320)*n + (67/864)
Empirical for n mod 12 = 3: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (2155/576)*n^2 + (62941/7680)*n - (537/256)
Empirical for n mod 12 = 4: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (8527/2592)*n^2 + (467/60)*n + (41/27)
Empirical for n mod 12 = 5: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (7097/2592)*n^2 + (394789/69120)*n - (21631/6912)
Empirical for n mod 12 = 6: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (1591/576)*n^2 + (3721/480)*n + (25/32)
Empirical for n mod 12 = 7: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (22211/5184)*n^2 + (62941/7680)*n - (10915/6912)
Empirical for n mod 12 = 8: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (4559/2592)*n^2 + (2963/540)*n + (8/27)
Empirical for n mod 12 = 9: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (1073/288)*n^2 + (61501/7680)*n - (621/256)
Empirical for n mod 12 = 10: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (17135/5184)*n^2 + (3721/480)*n + (1123/864)
Empirical for n mod 12 = 11: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (14275/5184)*n^2 + (407749/69120)*n - (19363/6912)
Comments