cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250649 Number of length 5+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

28, 280, 1424, 4853, 12473, 28379, 56088, 103712, 175998, 289559, 445513, 675267, 974698, 1392138, 1913166, 2619191, 3465655, 4583225, 5895042, 7580998, 9518912, 11977473, 14741143, 18198445, 22042896, 26774380, 31970892, 38321697, 45196741
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 5 of A250646

Examples

			Some solutions for n=6
..2....0....2....6....0....5....5....3....1....2....4....2....1....1....6....3
..6....0....2....0....0....4....4....1....2....3....5....1....2....0....3....0
..1....5....5....1....5....2....1....5....4....2....4....3....3....0....4....2
..3....6....4....1....1....6....3....6....6....4....3....2....0....1....2....4
..1....0....1....3....2....3....0....0....6....5....1....1....0....4....0....3
..6....5....2....5....2....1....5....4....0....3....0....4....4....0....4....2
		

Formula

Empirical: a(n) = -3*a(n-1) -4*a(n-2) +11*a(n-4) +21*a(n-5) +18*a(n-6) -6*a(n-7) -39*a(n-8) -53*a(n-9) -30*a(n-10) +22*a(n-11) +64*a(n-12) +64*a(n-13) +22*a(n-14) -30*a(n-15) -53*a(n-16) -39*a(n-17) -6*a(n-18) +18*a(n-19) +21*a(n-20) +11*a(n-21) -4*a(n-23) -3*a(n-24) -a(n-25)
Empirical for n mod 12 = 0: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (791/288)*n^2 + (467/60)*n + 1
Empirical for n mod 12 = 1: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (11065/2592)*n^2 + (61501/7680)*n - (13183/6912)
Empirical for n mod 12 = 2: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (9199/5184)*n^2 + (23569/4320)*n + (67/864)
Empirical for n mod 12 = 3: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (2155/576)*n^2 + (62941/7680)*n - (537/256)
Empirical for n mod 12 = 4: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (8527/2592)*n^2 + (467/60)*n + (41/27)
Empirical for n mod 12 = 5: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (7097/2592)*n^2 + (394789/69120)*n - (21631/6912)
Empirical for n mod 12 = 6: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (1591/576)*n^2 + (3721/480)*n + (25/32)
Empirical for n mod 12 = 7: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (22211/5184)*n^2 + (62941/7680)*n - (10915/6912)
Empirical for n mod 12 = 8: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (4559/2592)*n^2 + (2963/540)*n + (8/27)
Empirical for n mod 12 = 9: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (1073/288)*n^2 + (61501/7680)*n - (621/256)
Empirical for n mod 12 = 10: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (17135/5184)*n^2 + (3721/480)*n + (1123/864)
Empirical for n mod 12 = 11: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (14275/5184)*n^2 + (407749/69120)*n - (19363/6912)